• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurement system for fast power and energy rating of photovoltaic devices

Bliss, Martin January 2011 (has links)
This thesis presents a new type of solar simulator and new measurement methods that allow for fast power rating of photovoltaic devices and for fast performance measurements for energy rating and energy yield predictions indoors under controlled, and more realistically simulated outdoor conditions. A novel indoor measurement system for photovoltaic device characterisation based on light emitting diodes (LEDs) as the light sources is described. The solar simulator is capable of reproducing spectral changes seen in natural sunlight, with its intricacies of variable air mass and weather conditions, to a better match than previously possible. Furthermore, it allows measurements under varying light intensity and device temperature. The prototype LED-based solar simulator developed is characterised and its measurement quality is analysed. The system achieves a class BAA solar simulator classification with a class B spectral match, class A light intensity uniformity and a class A temporal stability. It is the first system of its kind that meets the standards of a solar simulator in spectral match to the standard sunlight spectrum and in terms of minimum light intensity. An uncertainty analysis shows that calibration uncertainty for crystalline silicon solar cells is 5% in maximum power with a 95.45% level of confidence. Recommendations for further versions of the solar simulator are given and show potential of reducing this uncertainty down to 2.9% across all measurement spectra (1.8% with a primary calibrated reference cell). A new method for automated power-rating of single- and multi-junction devices is developed. The method uses a unique spectral response measurement and fitting method. It eliminates the need of external measurement equipment for determining spectral response. A simulated characterisation of an amorphous silicon single- and double-junction solar cell show accuracy of better than 0.5% in maximum power. First measurements on the LED-based solar simulator show a measurement error of 4.5% in maximum power, which is due to a lack of measurement feedback of spectral output and measurement irradiance. The first three-dimensional performance matrix for use in photovoltaic energy rating is reported, utilising the LED-based solar simulator. Device characteristics are measured indoors under varying irradiance, temperature and spectrum. A measurement method is detailed and utilised on a crystalline and amorphous silicon solar cell. It allows for the first time a direct investigation of spectral effects on photovoltaic devices under controlled conditions. Results show that amorphous silicon devices are very sensitive to changes in spectrum. Thus, spectral effects should not be neglected in energy yield predictions for such devices.
2

Uncertainty considerations in photovoltaic measurements

Mihaylov, Blagovest V. January 2016 (has links)
Measurement uncertainty is an indication of the quality of a given measurement and ultimately translates into the confidence with which a decision can be made. In the context of PV, measurement uncertainties propagate into energy yield uncertainty, which in turn culminates into financial risk associated with an investment. This risk increases the cost of a PV installation. The aim of this thesis is to contribute towards the reduction of PV related measurement uncertainties. This is done in two ways. One is via developing and utilising more comprehensive methodologies for uncertainty propagation of complex measurands. The other is via more detailed estimates of the uncertainty contributors. In particular, the areas addressed in this thesis are the uncertainty estimation of the temperature coefficient measurements of modules; the uncertainty estimation of energy rating and module performance ratio measurements; and the uncertainties due to spectral effects on measurements performed with a flash solar simulator. The reported deviation in measurements of the temperature coefficients of P_MAX of modules is in the order of ±10% to ±15%. This is larger than the difference in the temperature coefficients of modules of the same type. The first step to improving the deviation between measurements is to estimate the uncertainty in a robust way. It was identified that there was no accepted approach of doing this. These measurements are strongly correlated, which complicates the uncertainty estimates. For the sake of simplicity, previously correlations have been avoided and conservative estimates used instead. In this work, uncertainties in both temperature and power and their correlations are estimated and propagated into the overall temperature coefficient uncertainty. Furthermore, temperature coefficients were calculated via weighing the measurements with their associated uncertainties. This was done for five different measurement setups that represent the majority of setups used worldwide. The approach was validated with measurement intercomparison of two modules measured on all systems. The approach reduced the overall uncertainty by half compared to the previous conservative estimates. It was demonstrated that uncertainties as low as 3% are achievable. The improved uncertainty estimates enabled the identification of a systematic effect due to a class B spectrum. This work culminated in the lowest reported measurement deviation of ±3.2% for module P_MAXtemperature coefficient measurements that was within the stated measurement uncertainties. The clear benefit of accounting for correlations was extended to measurements at different irradiance conditions and into the calculation of module performance ratio and energy rating. This was done via defining all the correlations between measurements and then propagating them with Monte Carlo simulations. The simulations are done with samples of a multivariate normal distribution with a variance-covariance matrix that corresponds to the estimated measurement correlations. It is demonstrated that both the energy rating and module performance ratio uncertainties strongly depend on the correlation estimates and that they cannot be conservatively overestimated. The module performance ratio uncertainty can be significantly lower than the measurement uncertainty at STC. This is because of the additional knowledge encoded into the selection of the underlying model used for calculating the energy rating. Therefore, the significance of the choice of model in the upcoming standard has been highlighted. It was confirmed that both bilinear interpolation and the proposed climatic datasets could be used for energy rating, but there are some areas that may need further investigation. An alternative way of improving uncertainty estimates and in turn reducing the associated uncertainty is via a more detailed characterisation of the uncertainty sources. A key uncertainty source is due to spectral effects in flash solar simulators. To better quantify this source, a complementary device was built to monitor the spectrum. The device is based on a matrix of photodiodes with commercially available interference filters situated on top and custom designed data acquisition electronics. This device is used in conjunction with the spectroradiometer to estimate the effects of flash-variation on the spectrum, the spectral temporal stability of the flash and spectral uniformity of the simulator and the attenuation masks used for altering the irradiance levels. It was demonstrated that the spectrum changes significantly during the flash and between flashes. While this effect is partially corrected for via the monitoring cell, it introduces additional uncertainty for non c-Si modules. This uncertainty is minimised by changes in the operational procedures. The spectral non-uniformity of the attenuation masks was shown to be significant, i.e. as large as 4%, in the NIR, prompting further investigation of the additional uncertainty for non c-Si modules. In this work, the methodology of estimating and propagating correlations in PV related measurements and the benefits of doing so are demonstrated. It is also highlighted that the uncertainty due to spectral effects goes beyond the uncertainty of spectroradiometer measurements. Finally, it is shown how they can be estimated with a complementary spectral monitor.
3

Energy performance regulations and methodologies of energy saving in office buildings in southern Europe

Tsave, A. January 2009 (has links)
The Directive 2002/91/EC of the European Parliament and Council on energy performance of buildings entered into force on 4th January 2003, setting the minimum requirements of energy performance. All Member States had to incorporate the requirements of the new directive in national legislation by January 2006 and build up relevant systems and measures to transpose and implement these requirements. The stage of Directive’s implementation in the countries of Southern Europe is reported because of the similar climatic conditions and the geographical location for a future enforcement in Greece, as the building code in Greece is still under development. As energy use in buildings accounts for about 40% of the final energy demand in the European Union, the application of building standards can achieve a reduction in electric energy consumption and therefore an increase in energy performance of buildings. A record of the electric energy consumption of office buildings in the four Prefectures of Crete is implemented aiming at a future energy saving, which may be obtained by either through increased efficiency or by reducing electric energy consumption.
4

Analysis Methods for Post Occupancy Evaluation of Energy-Use in High Performance Buildings Using Short-Term Monitoring

January 2011 (has links)
abstract: The green building movement has been an effective catalyst in reducing energy demands of buildings and a large number of `green' certified buildings have been in operation for several years. Whether these buildings are actually performing as intended, and if not, identifying specific causes for this discrepancy falls into the general realm of post-occupancy evaluation (POE). POE involves evaluating building performance in terms of energy-use, indoor environmental quality, acoustics and water-use; the first aspect i.e. energy-use is addressed in this thesis. Normally, a full year or more of energy-use and weather data is required to determine the actual post-occupancy energy-use of buildings. In many cases, either measured building performance data is not available or the time and cost implications may not make it feasible to invest in monitoring the building for a whole year. Knowledge about the minimum amount of measured data needed to accurately capture the behavior of the building over the entire year can be immensely beneficial. This research identifies simple modeling techniques to determine best time of the year to begin in-situ monitoring of building energy-use, and the least amount of data required for generating acceptable long-term predictions. Four analysis procedures are studied. The short-term monitoring for long-term prediction (SMLP) approach and dry-bulb temperature analysis (DBTA) approach allow determining the best time and duration of the year for in-situ monitoring to be performed based only on the ambient temperature data of the location. Multivariate change-point (MCP) modeling uses simulated/monitored data to determine best monitoring period of the year. This is also used to validate the SMLP and DBTA approaches. The hybrid inverse modeling method-1 predicts energy-use by combining a short dataset of monitored internal loads with a year of utility-bills, and hybrid inverse method-2 predicts long term building performance using utility-bills only. The results obtained show that often less than three to four months of monitored data is adequate for estimating the annual building energy use, provided that the monitoring is initiated at the right time, and the seasonal as well as daily variations are adequately captured by the short dataset. The predictive accuracy of the short data-sets is found to be strongly influenced by the closeness of the dataset's mean temperature to the annual average temperature. The analysis methods studied would be very useful for energy professionals involved in POE. / Dissertation/Thesis / M.S. Architecture 2011
5

Ανάπτυξη και εφαρμογή μεθοδολογίας περιβαλλοντικής αξιολόγησης σε ηλεκτροχρωμικά παράθυρα / Development of an environmental evaluation methodology and application for electrochromic windows

Συρράκου, Ελένη 31 May 2007 (has links)
Στη διατριβή αυτή έχει αναπτυχθεί ένας νέος συνδυασμός της Ανάλυσης Κύκλου Ζωής (ΑΚΖ) και της Ανάλυσης Οικολογικής Απόδοσης, που εφαρμόζεται για την αξιολόγηση της περιβαλλοντικής και ενεργειακής απόδοσης και της απόδοσης κόστους ενός πρότυπου ηλεκτροχρωμικού παραθύρου, η οποία έχει σκοπό να χρησιμοποιηθεί ως διάταξη εξοικονόμησης ενέργειας σε κτήρια. Ο κύριος στόχος είναι να επισημάνουμε πώς η συγκεκριμένη μέθοδος συμπληρώνει τις δύο μεθόδους, ενσωματώνοντας τα ιδιαίτερα πλεονεκτήματά τους σε ένα πληρέστερο και πιο ισχυρό διαγνωστικό εργαλείο. Η αποδοτικότητα της μεθόδου αποδεικνύεται με εφαρμογή σε έναν ηλεκτροχρωμικό υαλοπίνακα (K-Glass/WO3/πολυμερής ηλεκτρολύτης/V2O5/K-Glass), διαστάσεων 40cmx40cm. Αξιολογείται ολόκληρος ο κύκλος ζωής του εφαρμόζοντας τη μέθοδο της ΑΚΖ (ISO 14040). Για να μετρηθεί και να καταγραφεί η οικολογική απόδοση, χρησιμοποιούνται δείκτες περιβαλλοντικής απόδοσης, οι οποίοι βασίζονται σε ισοζύγια υλικών και ενέργειας και ορίστηκαν λαμβάνοντας υπόψη διάφορες παραμέτρους, (σενάριο ελέγχου, προσδοκώμενος χρόνος ζωής, κλιματικές συνθήκες, κόστος αγοράς). Ο συνδυασμός των αποτελεσμάτων οδηγεί σε σημαντικά συμπεράσματα για τον συνδυασμό ιδιοτήτων και τις πιθανές βελτιώσεις, που μπορεί να χρησιμοποιηθούν στη λήψη αποφάσεων για το σχεδιασμό και την ανάπτυξη του προϊόντος και για την επιλογή της βέλτιστης περίπτωσης μεταξύ διαφόρων υαλοπινάκων για ειδικές κλιματικές συνθήκες. Τέλος, μια τέτοια μεθοδολογία μπορεί να χρησιμοποιηθεί για την καθιέρωση ενεργειακής σήμανσης, ή ενεργειακής ταξινόμησης των παραθύρων, ενώ επιπλέον είναι σύμφωνη με την Ευρωπαϊκή Οδηγία (2002/91/EC) για την ενεργειακή απόδοση των κτηρίων, που απαιτεί πιστοποιητικά ενεργειακής απόδοσης για υφιστάμενα και νέα κτήρια. / In this study, a novel combination of the Life Cycle Assessment (LCA) and the Eco-efficiency analysis has been developed and implemented to evaluate the environmental, energy and cost efficiency potential of an electrochromic (EC) window prototype that aims to be used as an energy saving component in the building. The main objective is to mark out how the proposed method complements the traditional techniques, namely LCA and Eco-efficiency integrating their individual advantages into a more complete and a further more powerful diagnostic tool. The efficiency of the method is demonstrated with implementation to a 40cm x 40cm EC glazing (K-Glass/WO3/polymer electrolyte/V2O5/K-Glass). The whole life cycle of the EC glazing is evaluated by implementing the method of LCA (ISO 14040). In order to measure and report the ecological efficiency, environmental performance indicators were used, based on material and energy balances. The indicators were suitably defined taking into consideration various parameters (control scenario, expected lifetime, climatic type, purchase cost). Significant conclusions can be drawn for the development and the potential applications of the device compared to other commercial fenestration products. The combination of the results leads to significant conclusions for the balance of its properties and possible improvements that can be utilized in decision making for the product design and development and for the selection of an optimum case among various fenestration products for specific areas/climates. Finally, such a methodology can be utilized to establish a system for energy labeling or energy rating of windows and it is in accordance with the European Directive (2002/91/EC) on the energy performance of buildings, which calls for energy performance certificates to be available for new and existing buildings.
6

Energetická a environmentální analýza budovy / Energy and environmental analysis of the building

Dobrá, Zdena January 2018 (has links)
The diploma thesis is to bring knowledge from the field of energy and simulation evaluation of buildings. Further, there is an introduction to the issue of energy and environmental assessment, legislative documents. A brief procedure for creating an energy model in a simulation program, then setting the model. Evaluated results from DesignBuilder that are in the form of charts. And also the evaluation of the measured data in the form of graphs from Libuše object in Karlova Studánka.
7

Experimentální metody v energetickém hodnocení / Experimental Methods in energy assessment

Palík, Lukáš January 2015 (has links)
The final thesis is focused od the experimental metods in energy rating of building. In the first part is described history of energy rating from the eigtheens to the present and described is the current trend of energy rating in terms of energy performance certificates. In the second part is elaborated energy assessment for apartment building from bricks with six residential units. For the building is drawn a total of 6 measures, of which there are 3 structural and 3 for building equipment. The measures are assembled to variants and the resulting variant is recommended, including recommendation. In the last experimental part is described the influence of shading elements on the thermal load of the room and modeled the effect of insulating double glazing and triple the overall energy performance reference room.
8

Posouzení vlivu provedení zateplení rodinného domu na Zlínsku na výdaje spojené s provozem této nemovitosti / Assessment of the Impact of Thermal Insulation Performance of a Detached House in the Zlín Disctrict on Running Expenses of this Property

Velísková, Eva January 2013 (has links)
Master´s thesis deals with an assessment of investment return in saving precurations. The issue is used on an ordinary detached family house. The assessment is done in more variants to reach an objective comparison of the most advantageous investments. In the first part there is a comprehensive theory explaining the connections of the procedures and the algorithms of the calculations. The second part is calculation, especially from the thermal engineering, energy rating of buildings and the economic return on investment. The third part is an evaluation which, on the basis of the experiences and the results from the thesis, offers a proces show to think in case of intended reconstruction and how to evaluate the efficiency of the investments in the saving precurations.

Page generated in 0.0902 seconds