• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative Techniques Based on Energy Spreading Transform for Wireless Communications

Hwang, Taewon 10 November 2005 (has links)
The objective of the proposed research is to devise high-performance and low-complexity signal-detection algorithms for communication systems over fading channels. They include channel equalization to combat intersymbol interference (ISI) and multiple input multiple output (MIMO) signal detection to deal with multiple access interference (MAI) from other transmit antennas. As the demand for higher data-rate and more efficiency wireless communications increases, signal detection becomes more challenging. We propose novel transmission and iterative signal-detection techniques based on energy spreading transform (EST). Different from the existing iterative methods based on the turbo principle, the proposed schemes are independent of channel coding. EST is an orthonormal that spreads a symbol energy over the symbol block in time and frequency for channel equalization; space and time for MIMO signal detection with flat fading channels; and space, time, and frequency for MIMO signal detection with frequency-selective fading channels. Due to the spreading, EST obtains diversity in the available domains for the specific application and increases the reliability of the feedback signal. Moreover, it enables iterative signal detection that has near interference-free performance only at the complexity of linear detectors. Either a hard or soft decision can be fed back to the interference-cancellation stage at the subsequent iteration. The soft-decision scheme prevents error propagation of the hard-decision scheme for a low SNR and improves the performance. We analyze the performance of the proposed techniques. Analytical and simulation results show that these schemes perform very close to the interference-free systems.

Page generated in 0.1195 seconds