Spelling suggestions: "subject:"conergy storage"" "subject:"coenergy storage""
171 |
Studies of inherently conducting polymers in ionic liquidsMazurkiewicz, Jakub. January 2007 (has links)
Thesis (Ph.D.)--University of Wollongong, 2007. / Typescript. Includes bibliographical references.
|
172 |
Analysis and optimal sizing of an energy storage system for wind farm applications /Yen, Zuan Z. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2010. / Printout. Includes bibliographical references (leaves 84-87). Also available on the World Wide Web.
|
173 |
Operation of a brushless DC drive for application in hybrid electric vehiclesJenkins, James Scott, January 2007 (has links) (PDF)
Thesis (M.S.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed October 25, 2007) Includes bibliographical references (p. 61-62).
|
174 |
Assessing the potential for Compressed Air Energy Storage using the offshore UK saline aquifer resourceMouli-Castillo, Julien Manuel Albert January 2018 (has links)
In the context of the development of renewable energy sources in the U.K., and of the increase in anthropogenic atmospheric CO2, it is important to develop alternative ways of providing energy to the community. The shift to renewable sources of electricity comes to a cost: variable generation. At present, an important part of the renewable electricity capacity is being curtailed during low demand periods. One way to ensure that electricity supply matches demand is to store excess energy when it is available and deliver it when demand cannot be met by primary generation alone. Compressed Air Energy Storage (CAES) allows this storage. The aim of this project is to build upon existing knowledge on CAES using porous rocks (PM-CAES) to assess the technical feasibility for this storage technology to be developed offshore of the UK. The focus is on inter-seasonal storage. This assessment is undertaken by developing geological and power plant models to calculate the storage potential of offshore UK formations. Modelling of a conceptual aquifer air store enables approximations of the subsurface pressure response to CAES operations. These pressure changes are coupled with surface facilities models to provide estimates of both load/generation capacity and roundtrip efficiencies. Algebraic predictive models can be developed from the results of a sensitivity analysis of the store and plant idealised models. Screening of the CO2 Stored database, containing data on geological formations offshore of the UK (initially developed for CO2 storage), was then performed to estimate PM-CAES potential using the predictive models. The results suggest that there is substantial PM-CAES potential in the UK. Results indicate an energy storage potential in the range of 77-96 TWh, which can be released over 60 days. A geographic information system (GIS) study was then performed to identify the portion of the identified storage potential colocated with offshore windfarm. 19 TWh of the storage potential identified is colocated with windfarm and would be achievable at an average levelised cost of electricity of 0.70 £/kWh.
|
175 |
Characterisation and optimisation of electrical energy storage in residential buildingsOliveira E Silva, Guilherme 30 June 2017 (has links)
The consequences of over-reliance on fossil fuels for energy supply, namely climate change and security of supply, are pushing for the use of local, renewable energy sources which are usually variable in nature, prompting the need for energy storage. Today, there is a trend towards distributed energy storage, justified by the distributed nature of renewable energy sources and the important share of energy consumption in buildings. Important information on such small scale energy storage installations, however, is still missing and the results of the existing literature vary widely. To account for these research gaps, a thorough characterisation of energy storage technologies is performed, together with the dimensioning and optimisation of such installations in buildings, as well as some aspects of their impact on the grid.It is found that storage is still far from grid parity and expensive when compared to other solutions, although necessary for a high share of renewables. Also, energy storage is subject to important economies of scale and technical limitations that counter the reasoning for a distributed approach. There is an important lack of practical information on several energy storage technologies, and many studies on distributed storage use downsized values from large-scale installations that do not correctly depict smaller installations, leading to biased results. Nevertheless, today, lithium-ion batteries seem to be the most appropriate electrical energy storage technology for buildings, being well adapted to short term storage. On the other hand, a very high share of renewables will push for long term storage, itself a challenge given the high cost brought by a low utilisation factor. A high share of distributed generation also impacts the grid, a problem which most final consumers have no economic incentive to mitigate. Storage by itself, without a sound control strategy, does not help as it tends to increase the load variability while the peak load remains the same. Specific control algorithms could change that but incentives must be present, namely through the adaptation of current grid tariffs that do not correctly allocate existing costs. These findings are essential in the future planning of energy systems as well as in energy policy. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
176 |
Comparative strategies for efficient control and storage of renewable energy in a microgridDu Plooy, Henri January 2016 (has links)
Thesis (MTech (Electrical Engineering))--Cape Peninsula University of Technology, 2016. / Power fluctuations in a microgrid are caused by disturbances due to the connection and disconnection of Distributed Generators (DG’s), as well as the irregular input of the sun and wind renewable energy.
Renewable penetration such as the sun, wind and tidal energy causes intermittency which directly affects the input and resultant output power of a microgrid. Control systems have to be implemented on three different levels to ensure the stability and reliability of the power supplied to the load.
This can be achieved by implementing the following: 1) Primary control with mechanical valves and actuators to translate feedback signals through droop control.
2) Secondary control with power electronics to facilitate maximum power point tracking, phase lock loops and switch mode inverters to manipulate the electrical signals to a desired set points including PID control. 3) Tertiary control with software program management to monitor the power flow as well as to evaluate congregated logic and implement decision making. Energy storage systems like super capacitors can compensate for power imbalance by providing excess stored energy to the microgrid for short periods of time. The added advantage of capacitor banks is that it can facilitate power factor correction where inductive loads like rotating motors form large part of the total load. Battery banks can compensate for energy shortage for longer periods of time. The duration of the compensation can be determined by the size, topology and the type of batteries used.
The objectives of this study is to improve the unstable power output responses of a renewable energy microgrid by designing and analysing control strategies intended at power wavering compensation which also includes energy storage. Sub control systems is created and simulated in Matlab/Simulink for analytical comparative observations. Results of the simulated model are discussed and recommendations are given for future works.
|
177 |
Caracterização e remediação de passivos ambientais em empreendimentos energéticos / CHARACTERIZATION AND REMEDIATION OF ENVIRONMENTAL LIABILITIES DEVELOPMENTS IN ENERGYAlexandre Ruiz Picchi 28 June 2011 (has links)
Este trabalho buscou primeiramente caracterizar passivos ambientais em empreendimentos energéticos, em especial nos de armazenamento de energia. Para isto, avaliou-se as atividades potenciais de contaminação em empreendimentos com armazenamento de energia, em qualquer uma de suas formas (energia eletroquímica, elétrica, mecânica, cinética, hidráulica, térmica, química e nuclear). Foi elaborada uma sequência metodológica de levantamento de informações, com posterior associação entre os contaminantes e as atividades fonte de contaminação. Para um dos tipos de fontes de contaminação através de combustíveis, foi realizado um ensaio de bancada com amostras de combustível diluídas em água, para avaliar em laboratório se somente os compostos BTEX e PAH estão presentes, uma vez que são os geralmente analisados em áreas de armazenamento de gasolina e diesel, objetivando mensurar se a análise de somente estes compostos são suficientes para abranger o potencial toxicológico dessa contaminação. Como resultado constatou-se a necessidade de incluir os Trimetilbenzenos nas análises padrão realizadas nas áreas de armazenamento dos combustíveis avaliados. Para os mesmos tipos de contaminantes, os derivados de combustíveis, foram realizadas campanhas de oxidação química (ISCO) num posto de combustíveis desativado através da injeção de oxidante no aquífero freático, buscando a redução das concentrações para a intervenção de obras civis de uma nova ocupação para o imóvel. Os resultados obtidos foram satisfatórios, atendendo os objetivos pré-definidos, demonstrando a eficácia do processo oxidativo para a degradação de derivados de combustíveis utilizando-se o Persulfato de Sódio, ativado tanto por metais complexados (FeEDTA) quanto por aplicação em meio alcalino. / This study sought initially to characterize environmental liabilities in energy enterprises, especially in energy storage ones. Therefore, we evaluated the potential contamination activities within developments with energy storage in any of its forms (electrochemical, electrical, mechanical, kinetic, hydraulic, thermal, chemical and nuclear energy). A survey was elaborated using a methodological sequence to gather information, with subsequent association between the contaminant and the source of contamination activities. For one of the types of sources of contamination by fuel, we performed a bench and lab test using fuel diluted in water samples to evaluate if only the BTEX and HPA compounds, usually analyzed in areas of gasoline and diesel storage, are sufficient to cover the toxicological potential of such contamination. The results suggested the need to include trimethylbenzene in the standard analysis performed in the fuel storage areas evaluated. For the same types of contaminants, derivatives of fuels, chemical oxidation campaigns (ISCO) were carried out using direct push injections at a deactivated gas station, seeking to reduce concentrations for the intervention of civil works for a new occupation of the land. The results were satisfactory and the proposed goals have been achieved demonstrating the effectiveness of the oxidation process for the degradation of derived of fuels by using the Sodium Persulfate, activated by complexed metals (FeEDTA) and also by application in alkaline environment.
|
178 |
Estudo parametrico de um armazenador termico tipo gelo-sobre-serpentinas / Parametric study of an ice-on-coil type thermal storageMicaroni Neto, Franco 04 November 1996 (has links)
Orientador: Kamal A. R. Ismail / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-22T01:57:32Z (GMT). No. of bitstreams: 1
MicaroniNeto_Franco_M.pdf: 5213508 bytes, checksum: e8c2adb85dc9e1a8f2d71ce32a728400 (MD5)
Previous issue date: 1996 / Resumo: Diversas formas construtivas são empregadas na construção de armazenadores de calor latente. Em sistema de ar condicionado é muito comum o emprego de armazenadores do tipo gelo-sobre-serpentinas. Esses armazenadores apresentam algumas características próprias e são poucos os estudos encontrados na literatura sobre esse tipo de armazenador. A condução de calor axial no material de mudança de fase e no fluido de transferência de calor foi desprezada. A temperatura de entrada do FTC é considerada constante. O acoplamento do problema de mudança de fase com a transferência de calor para o FTC é obtido fazendo-se um balanço de energia em um elemento do fluido. O coeficiente convectivo do FTC é calculado através de fórmulas que aproximam resultados numéricos para fluxo em tubos curvos. A convecção natural no MMF é desprezada. O modelo numérico é obtido através da formulação por diferenças finitas com esquema de três-niveis-tempo para o incremento de tempo. No modelo bidimensionalo coeficiente convectivo é função da direção periférica. No modelo unidimensionala parede da serpentina é substituída por uma resistência equivalente e o coeficiente convectivo é constante na direção periférica. O modelo foi considerado bom para simular o processo de carregamento do armazenador. Os resultados mostram a influência da condutividade da parede, número de Biot, natureza do FTC, temperatura de entrada do FTC, e parâmetros próprios desse tipo de armazenador como o número de Nusselt médio axial e o número de Nusselt periférico. Os resultados desse trabalho são importantes porque mesmo não solucionando totalmente o problema devido a sua complexidade fornece as informações necessárias para que soluções numéricas e analíticas mais simples sejam aplicadas com bons resultados / Abstract: Several constructive form are used to build latent heat storages. In air conditioning systems, the use of ice-on-coil type storage is very common. These storages have some particular characteristics and few studies are found in literature on this type of storages. Heat conduction parallel to the tube axes and the effects ofaxial changes in the temperature of the heat transfer fluid (HTF) was neglected. The HFT input temperature is considered constant. The coupling of the problem of phase change with heat transfer to the HFT is achieved by performing an energy balance in a fluid elemento The HFT convective coefficient is calculated by formulas which approximate the numerical results for flow in curved pipes. Natural convection in PCM is neglected. The numerical model is obtained by the formulation by finite-differences with a three-time-Ievel scheme for the time increment. In the two-dimensional model, the convective coefficient is a function of the peripheral coordinate. In the one-dimensional model, the coil wall is replaced by an equivalent thermal resistance and the convective coefficient is constant in the peripheral direction. The model was considered adequate to simulate the charging period of the storage. The results show the influence of the conductivity of the wall, Biot number, nature of HFT, input temperature of HFT, and specific parameters of this type of storage with the mean axial Nusselt number and the peripheral Nusselt number. The results of this work are important because, although they do not solve the problem thoroughly due to its complexity, they provide the information required for simpler numeric and analytical solutions can be applied with good results / Mestrado / Mestre em Engenharia Mecânica
|
179 |
Transition-metal based oxides for oxygen storage and energy-related applicationsHuang, Xiubing January 2015 (has links)
The development of energy storage and conversion techniques with high efficiency and power density is of great importance for the sustainable development of our green world. Li-O₂ batteries with high theoretical energy density has attracted extensive attention. However there are still many issues waiting to be solved, such as low stability of cathode catalyst, as well as the deactivation of cathode by H₂O and CO₂ from air. Reversible solid oxide fuel cells can be used for electricity production by SOFCs and fuel production (H₂ and O₂) by SOECs. Thus, oxygen storage materials can bridge Li-O₂ batteries and reversible SOFCs with the purpose of increasing the whole efficiency of the system. The discovery of oxygen storage materials with reversible oxygen release/storage behaviours and high oxygen storage capacities dependent on temperature or oxygen partial pressures (e.g., inert and oxidation gases) still needs further research. The work in this thesis mainly focuses on the preparation of transition-metal based oxides (such as perovskite oxides, brownmillerite-type oxides, layered-perovskite oxides, coated β-MnO₂ nanorods, transition-metal doped CeO₂ nanocrystals) as oxygen storage materials and their energy-related applications, seeking to discover the principles for oxygen storage/release properties and their performance in energy conversion and storage applications. The prepared materials included nanostructured and bulk materials via various synthesis methods, including citrate-modified evaporation-induced self-assembly method, hydrothermal method, pechini method, as well as solid state method. This work investigated the oxygen storage capacities of several crystal structure types oxides based on transition-metals. Nanostructured La₀.₆Ca₀.₄Fe₁₋ₓCoₓO[sub](3-δ) and La₀.₆Ca₀.₄Mn₁₋ₓFeₓO[sub](3-δ) exhibit high oxygen storage capacities and stability under reductive 5%H₂/Ar, but the oxygen-storage content under inert argon is low, just about 0.2 wt%. Brownmillerite-type Ca₂AlMnO₅ is demonstrated to possess a large amount of oxygen release/storage capacities depending on temperature even under flowing oxygen, as well as high oxygen storage/release properties and reversibility under alternating inert and oxygen gases at 500 °C. Substituting Ga on the Al-site would reduce the oxygen storage capacities, even though these substituted samples still posses good reversibility. The effect of A-site species (Mg, Ca, Sr) have been also investigated and demonstrated. It can't obtain pure brownmillerite-type crystal structure when Ca is partially or totally substituted by Mg or Sr, resulting in poor reversibility and low oxygen storage capacities. Nanostructured layered-perovskite La₁.₇Ca₀.₃M₁₋ₓCuₓO[sub](4-δ) (M = Fe, Co, Ni, Cu) have also been investigated for oxygen storage and as potential cathodes for IT-SOFCs. Even though the as-prepared layered-perovskite oxides have been demonstrated to be good candidates as cathode materials for IT-SOFCs with high performance, they do not possess high amount of oxygen storage/release ability under inert atmospheres because of the robust phase stability. β-MnO₂ nanorods can release large amount of oxygen (ca. 9.2 wt%) with increasing temperature at about 560 °C under various gases (air, N₂). Coating β-MnO₂ nanorods with CeO₂ nanocrystals could result in lower temperatures for oxygen mobility and removal under N₂ because of the enhanced oxygen mobility between CeO₂₋ₓ and β-MnO₂, while coating β-MnO₂ nanorods with SnO₂ nanocrystals have no enhanced oxygen mobility behaviours. The results demonstrate the positive and negative synergetic effect between other metal oxides and β-MnO₂ on the oxygen migration. Cr- and Cu-doped CeO₂ nanocrystals (i.e. nanorods, nanocubes and nanoparticles) were chosen to investigate the effect of transition-metal doping on CeO₂ and their valence changes with temperature and various atmospheres, as well as their oxygen storage capacities. The effect of Cr- or Cu- doping on CeO₂ nanocrystal morphology and oxygen storage capacities have been investigated and demonstrated. This provides some basic information for transition-metals doped CeO₂ nanocrystal evolution and stability, as well as further applications in energy-related fields, such as three-way catalysts, electrode materials in solid oxide fuel cells and Li-air batteries.
|
180 |
Loss of mains detection and amelioration on electrical distribution networksTen, Chui Fen January 2011 (has links)
Power system islanding is gaining increasing interest as a way to maintain power supply continuity. However, before this operation become viable, the technical challenges associated with its operation must first be addressed. A possible solution to one of these challenges, out-of synchronism reclosure, is by running the islanded system in synchronism with the mains whilst not being electrically connected. This concept, known as 'synchronous islanded operation' avoids the danger of out-of-synchronism reclosure of the islanded system onto the mains. The research in this thesis was based on the concepts presented in [1-3] and specifically applied to multiple-DG island scenarios. The additional control challenges associated with this scenario are identified and an appropriate control scheme, more suited for the operation of multiple-DG synchronous islands, is proposed. The results suggest that multiple-DG synchronous islanded operation is feasible, but a supervisory controller is necessary to facilitate the information exchange within the islanded system and enable stable operation.For maximum flexibility, the synchronous island must be capable of operating with a diversity of generation. The difficulties become further complicated when some or all of the generation consists of intermittent sources. The performance of the proposed control scheme in the presence of a significant contribution of renewable sources within the island is investigated. Two types of wind technologies were developed in PSCAD/EMTDC for this purpose, they are a fixed speed induction generator (FSIG) based wind farm and a doubly-fed induction generator (DFIG) based wind farm. The results show that although synchronous islanded operation is still achievable, the intermittent output has an adverse effect on the control performance, and in particular limits the magnitude of disturbances that can happen in the island without going beyond the relaxed synchronisation limits of ±60o.Energy storage is proposed as a way to reduce the wind farm power variation and improve phase controller response. A supplementary control is also proposed such that DFIG contributes to the inertial response. The potential of the proposed scheme (energy storage + supplementary control) is evaluated using case studies. The results show massive improvement to the load acceptance limits, even beyond the case where no wind farm is connected. The benefit of the proposed scheme is even more apparent as the share of wind generated energy in the island grows.
|
Page generated in 0.2036 seconds