• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy-Efficient, Utility Accrual Real-Time Scheduling

Wu, Haisang 29 August 2005 (has links)
In this dissertation, we consider timeliness and energy optimization in battery-powered, mobile embedded real-time systems. We focus on real-time systems that operate in environments with dynamically uncertain properties, including context-dependent activity execution times and arbitrary activity arrival patterns. We consider an application model where activities are subject to time/utility function (or TUF) time constraints, mutual exclusion constraints on concurrent sharing of non-CPU resources, timeliness requirements including assurances on individual activity timeliness behavior, and system-level energy consumption requirements including a non-exhaustable energy budget. To account for uncertainties in activity properties in dynamic systems, we stochastically describe activity execution demands, and describe activity arrival behaviors using the unimodal arbitrary arrival model, which allows unbounded arrival frequencies. We consider the scheduling optimality criteria of: (1) probabilistically satisfying lower bounds on individual activities' maximal timeliness utilities, and (2) maximizing system-level energy efficiency, while ensuring that the system's energy consumption never exhausts the energy budget and resource mutual exclusion constraints are satisfied. For this multi-criteria scheduling problem, we present a DVS (dynamic voltage scaling)-based, real-time scheduling algorithm called the Energy-Bounded Utility Accrual Algorithm (or EBUA). Since the scheduling problem is NP-hard, EBUA heuristically (and dynamically) allocates CPU cycles to activities, computes activity schedules, and scales CPU voltage and frequency with a polynomial-time cost. If activities' cumulative execution demands exceed the available CPU time or may exhaust the system's energy budget, the algorithm defers and rejects jobs in a controlled fashion, minimizing system-level energy consumption and maximizing total accrued utility. We analytically establish several properties of EBUA. We prove that the algorithm never exhausts the specified energy budget. Further, we establish EBUA's timeliness optimality during under-loads, freedom from deadlocks, and correctness in mutually exclusive resource sharing. In particular, we prove that the algorithm's timeliness behavior subsumes the optimal timeliness behavior of deadline scheduling as a special case, and identify the conditions under which lower bounds on individual activity utilities are satisfied. In addition, we upper bound the time needed for mutually exclusively accessing shared resources under EBUA. We conduct experimental studies by simulating the algorithm on the DVS-enabled AMD k6 processor model, and by implementing it on QNX Neutrino 6.2.1 RTOS. Our experimental results validate our analytical results. Further, they confirm EBUA's superiority over other energy-efficient real-time scheduling algorithms on timeliness and energy consumption behaviors. / Ph. D.
2

Finite-horizon Online Energy-efficient Transmissionscheduling Schemes Forcommunication Links

Bacinoglu, Tan Baran 01 January 2013 (has links) (PDF)
The proliferation of embedded systems, mobile devices, wireless sensor applications and in- creasing global demand for energy directed research attention toward self-sustainable and environmentally friendly systems. In the field of communications, this new trend pointed out the need for study of energy constrained communication and networking. Particularly, in the literature, energy efficient transmission schemes have been well studied for various cases. However, fundamental results have been obtained mostly for offline problems which are not applicable to practical implementations. In contrast, this thesis focuses on online counterparts of offline transmission scheduling problems and provides a theoretical background for energy efficient online transmission schemes. The proposed heuristics, Expected Threshold and Expected Water Level policies, promise an adequate solution which can adapt to short-time-scale dynamics while being computationally efficient.

Page generated in 0.1094 seconds