• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Green and Highly Efficient MIMO Transceiver System for 5G Heterogenous Networks

Al-Yasir, Yasir I.A., Abdulkhaleq, Ahmed M., Ojaroudi Parchin, Naser, Elfergani, Issa T., Rodriguez, J., Noras, James M., Abd-Alhameed, Raed, Rayit, A., Qahwaji, Rami S.R. 23 July 2021 (has links)
Yes / The paper presents the general requirements and an exemplary design of the RF front-end system that in today's handset is a key consumer of power. The design is required to minimize the carbon footprint in mobile handsets devices, whilst facilitating cooperation, and providing the energy-efficient operation of multi-standards for 5G communications. It provides the basis of hardware solutions for RF front-end integration challenges and offers design features covering energy efficiency for power amplifiers (PAs), Internet of Things (IoT) controlled tunable filters and compact highly isolated multiple-input and multiple-output (MIMO) antennas. An optimum design requires synergetic collaboration between academic institutions and industry in order to satisfy the key requirements of sub-6 GHz energy-efficient 5G transceivers, incorporating energy efficiency, good linearity and the potential for low-cost manufacturing. A highly integrated RF transceiver was designed and implemented to transmit and receive a picture using compact MIMO antennas integrated with efficient tunable filters and high linearity PAs. The proposed system has achieved a bit error rate (BER) of less than 10-10 at a data rate of 600 Mb/s with a wireless communication distance of more than 1 meter and power dissipation of 18-20 mW using hybrid beamforming technology and 64-QAM modulation. / 10.13039/100010665-H2020 Marie Skodowska Curie

Page generated in 0.1007 seconds