• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation / Contrôle de la chaîne d'air des moteurs HCCI pour euro 7. / Modeling and Control of the Air-Path of Diesel Engines for the EURO 7

Castillo Buenaventura, Felipe 24 October 2013 (has links)
La chaîne d'air du moteur est devenue un élément essentiel dans le développement des moteurs modernes. Le contrôle du système d'air a un impact direct sur les performances du moteur ainsi que sur son niveau d'émission de polluants. En effet, les stratégies qui agissent sur le système d'air permettent de contrôler les composants introduits dans le cylindre, ce qui est un moyen efficace et rentable de réduire les émissions polluantes. En conséquence, les chaînes d'air des moteurs modernes sont devenues de plus en plus complexes afin d'atteindre les stratégies de réduction de pollution et de permettre des réductions de consommation de carburant. Dans ce contexte, cette thèse se focalise sur la modélisation et le contrôle de la chaîne d'air des moteurs Diesel. / The engine air-path has become a crucial part in the development of modern engines. The control of the air-path has a direct impact on the engine performance as well as on its pollutant emission level. Indeed, air system strategies allow controlling the species that are introduced in the cylinder, which is a cost-effective way to reduce pollutant emissions. As a consequence, the automotive air systems have become increasingly complex in order to achieve pollutant reduction strategies and to allow fuel consumption reductions. In this context, this thesis focuses on the modeling and control of the air-path of Diesel engines. We divide this work into short-term developments and medium-long term developments.
2

CONTROL OF OVER-ACTUATED SYSTEMS WITH APPLICATION TO ADVANCED TURBOCHARGED DIESEL ENGINES

Zhou, Junqiang 14 May 2015 (has links)
No description available.
3

Optimal air and fuel-path control of a diesel engine

Yang, Zhijia January 2014 (has links)
The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions.
4

Systematic Optimization and Control Design for Downsized Boosted Engines with Advanced Turbochargers

Liu, Yuxing 15 October 2014 (has links)
No description available.
5

Control for transient response of turbocharged engines

Cieslar, Dariusz January 2013 (has links)
The concepts of engine downsizing and down-speeding offer reductions in CO2 emissions from passenger cars. These reductions are achieved by reducing pumping and friction losses at part-load operation. Conventionally, rated torque and power for downsized units are recovered by means of turbocharging. The transient response of such engines is, however, affected by the static and dynamic characteristics of the turbo-machinery. Recent advances in engine simulation and control tools have been employed for the purpose of the research reported in this thesis to identify and verify possible air-path enhancements. A systematic method for evaluating various turbocharger assistance concepts is proposed and discussed in this thesis. To ensure a fair comparison of selected candidate systems, an easily reconfigurable controller providing a close-to-optimal operation, while satisfying physical limits, is formulated. This controller is based on the Model Predictive Control framework and uses a linearised mean value model to optimise the predicted behaviour of the engine. Initially, the controller was applied to a 1D simulation model of a conventional light-duty Diesel engine, for which the desired closed-loop features were verified. This procedure was subsequently applied to various air-path enhancement systems. In this thesis, a turbocharger electric assistance and various concepts based on compressed gas injection were considered. The capability of these systems to improve engine response during third gear tip-in manoeuvre was quantified. This investigation was also complemented with a parametric study of how effectively each of the considered methods used its available resources. As a result, injecting compressed gas into the exhaust manifold was identified as an effective method, which to date has attracted limited attention from engine research community. The effectiveness of the exhaust manifold assistance was experimentally verified on a light-duty Diesel engine. The sensitivity of the improvements to compressed gas supply parameters was also investigated. This led to the development of the BREES system: a low component count, compressed gas based system for reducing turbo-lag. It was shown that during braking manoeuvres a tank can be charged to the level sufficient for a subsequent boost assistance event. Such a functionality was implemented with a very limited set of additional components and only minor changes to the standard engine control.
6

Modeling, simulation and control of the air-path of an internal combustion engine / Modélisation, simulation et commande de la boucle d’air d’un moteur à combustion interne

Ahmed, Fayez-Shakil 04 July 2013 (has links)
Dans l’environnement concurrentiel d’aujourd’hui, la mondialisation des marchés et les enjeux socio-écologiques du développement durable représentent des défis majeurs pour l’industrie automobile. Afin de relever ces défis, les entreprises doivent investir dans des outils de développent plus performants. Pour améliorer la performance d’un moteur thermique en termes de consommation et d’émissions une compréhension enrichie de la boucle d’air autour du moteur et de l’interaction entre ses composants est indispensable Cette thèse suit deux axes de recherche dans ce contexte. Dans un premier temps, les problèmes liés à la modélisation d’une boucle d’air globale sont traités. En particulier, sont modélisés le débit d’air entre les différents sous-systèmes, la combustion en fonction du degré vilebrequin, la pulsation du débit et de la pression et l’estimation de la force aérodynamique sur les vannes des turbocompresseurs à géométrie variable (TGV). Cette étude de modélisation détaillée à été utilisée pour mettre en place un simulateur de la boucle d’air, qui prend en compte ces interactions et qui peut prédire l’influence des sous-systèmes sur la boucle globale. En suite, l’effort de notre recherche a été consacré à la modélisation des actionneurs mécatroniques de la boucle d’air et de leur comportement non linéaire dû au frottement, aux variations de la température, etc. Un modèle dynamique non linéaire à été développé et intégré dans le simulateur. Ce modèle peut être adapté aux plusieurs types d’actionneurs commerciaux. Le simulateur complet à été implémenté sous AMESim pour les modèles du moteur et de la boucle d’air, et sous Simulink pour le contrôle. Les modèles ont été paramétrées selon les spécifications d’un moteur commercial et le simulateur à été validé expérimentalement. Finalement, des lois de commande robustes ont été étudiées pour le contrôle en position (contrôle locale) des actionneurs. Un contrôleur adaptatif à été développé pour garantir la performance des actionneurs malgré des changements dans le frottement, ainsi que dans la charge externe. La performance de toutes les méthodes étudiées, a été validée expérimentalement. / Today’s globally competitive market and its associated environmental and social issues of sustainable development are major challenges for the automobile industry. To meet them, the industry needs to invest in high performance development tools. For improving engine performance in terms of consumption and emission, the interactions between the subsystems of the engine air-path need to be understood. This thesis followed two major axes of research in this context. First, the problems related to the modeling of the global air-path system were studied, which include the airflow characteristics between the different subsystems of the air-path, high frequency combustion modeling and pulsating airflow, and estimation of the exhaust aerodynamic force on the vanes of variable geometry turbochargers (VGT). The detailed modeling study was used for developing an engine air-path simulator, which takes into account these interactions and predicts the influence of subsystems on the global air-path. The second axis of research was focused on modeling of mechatronic actuators of the air-path, taking into account their nonlinear behavior due to friction and changes in operating conditions. A generic nonlinear dynamic model was developed and included in the simulator. This model can be adapted to most commercial actuators. The complete simulator has been implemented using AMESim for engine and air-path modeling, and Simulink for control. It has been parameterized according to the specifications of a commercial diesel engine and validated against experimental data. Finally, robust local controllers were studied for actuator position control, aimed at guaranteeing the performance of the actuators under parametric uncertainty and external disturbances. An advanced controller was developed, which adapts to changes in friction characteristics of the actuator and external load changes. The performance of all controllers has been demonstrated experimentally.
7

Modeling, simulation and control of the air-path of an internal combustion engine

Ahmed, Fayez-Shakil 04 July 2013 (has links) (PDF)
Today's globally competitive market and its associated environmental and social issues of sustainable development are major challenges for the automobile industry. To meet them, the industry needs to invest in high performance development tools. For improving engine performance in terms of consumption and emission, the interactions between the subsystems of the engine air-path need to be understood. This thesis followed two major axes of research in this context. First, the problems related to the modeling of the global air-path system were studied, which include the airflow characteristics between the different subsystems of the air-path, high frequency combustion modeling and pulsating airflow, and estimation of the exhaust aerodynamic force on the vanes of variable geometry turbochargers (VGT). The detailed modeling study was used for developing an engine air-path simulator, which takes into account these interactions and predicts the influence of subsystems on the global air-path. The second axis of research was focused on modeling of mechatronic actuators of the air-path, taking into account their nonlinear behavior due to friction and changes in operating conditions. A generic nonlinear dynamic model was developed and included in the simulator. This model can be adapted to most commercial actuators. The complete simulator has been implemented using AMESim for engine and air-path modeling, and Simulink for control. It has been parameterized according to the specifications of a commercial diesel engine and validated against experimental data. Finally, robust local controllers were studied for actuator position control, aimed at guaranteeing the performance of the actuators under parametric uncertainty and external disturbances. An advanced controller was developed, which adapts to changes in friction characteristics of the actuator and external load changes. The performance of all controllers has been demonstrated experimentally.

Page generated in 0.0813 seconds