• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thulium Fiber Laser lithotripsy

Blackmon, Richard Leious, Jr. 13 July 2013 (has links)
<p> The Thulium Fiber Laser (TFL) has been studied as a potential alternative to the conventional Holmium:YAG laser (Ho:YAG) for the treatment of kidney stones. The TFL is more ideally suited for laser lithotripsy because of the higher absorption coefficient of the emitted wavelength in water, the superior Gaussian profile of the laser beam, and the ability to operate at arbitrary temporal pulse profiles. The higher absorption of the TFL by water helps translate into higher ablation of urinary stones using less energy. The Gaussian spatial beam profile allows the TFL to couple into fibers much smaller than those currently being used for Ho:YAG lithotripsy. Lastly, the ability of arbitrary pulse operation by the TFL allows energy to be delivered to the stone efficiently so as to avoid negative effects (such as burning or bouncing of the stone) while maximizing ablation. Along with these improvements, the unique properties of the TFL have led to more novel techniques that have currently not been used in the clinic, such as the ability to control the movement of stones based on the manner in which the laser energy is delivered. Lastly, the TFL has led to the development of novel fibers, such as the tapered fiber and removable tip fiber, to be used for lithotripsy which can lead to safer and less expensive treatment of urinary stones. Overall, the TFL has been demonstrated as a viable alternative to the conventional Ho:YAG laser and has the potential to advance methods and tools for treatment of kidney stones. </p>
2

Focusing Light within Turbid Media with Virtual Aperture Culling of the Eigenmodes of a Resonator

Tom, William James 28 January 2014 (has links)
<p> Virtual aperture culling of the eigenmodes of a resonator (VACER) is a technique to focus light within turbid media at arbitrary locations. A seed pulse of light is directed through a phase-conjugate mirror (PCM) into a turbid medium. Though much of the light may be lost, any light which reaches the second PCM is phase conjugated and thus returned to the first PCM where the light will be phase conjugated again. Amplification by the PCMs can prevent decay of the light cycling between the PCMs. Introducing a mechanism which filters light based on position enables attenuation of the modes not traveling through the center of the virtual aperture resulting in a focusing of light at the center of the virtual aperture. The seed pulse and the positioning of the PCMs on opposite sides of the virtual aperture ensure that modes cannot bypass the virtual aperture. Magnetic fields and ultrasound waves are potential means for implementation of a virtual aperture. Generally, only weak filtration mechanisms like magnetic fields and ultrasound waves are innocuous to turbid media. Fortunately, weak effects can strongly cull modes in VACER because the filtration mechanism affects the modes during each pass between PCMs and the modes compete. A combination of theory and computational modeling prove that sound physical principles underlie VACER. Moreover, computational modeling reveals how mode overlap, the seed pulse, and other variables impact VACER performance. Good experimental performance is predicted.</p>
3

Analysis and application of opto-mechanics to the etiology of sub-optimal outcomes in laser corrective eye surgery and design methodology of deformable surface accommodating intraocular lenses

Mccafferty, Sean 17 June 2015 (has links)
<p> <b>Overview:</b> Optical concepts as they relate to the ophthalmologic correction of vision in corneal laser vision correction and intraocular lens design was examined. </p><p> <b>Purpose:</b> The interaction between the excimer laser and residual corneal tissue in laser vision correction produces unwanted side effects. Understanding the origin of these artifacts can lead to better procedures. Furthermore, accommodating intraocular lenses offer a potential for eliminating presbyopia. Understanding the properties of a new accommodating intraocular lens incorporating a deformable interface may lead to advances in cataract surgery. </p><p> <b>Introduction:</b> Corneal surface irregularities following laser refractive procedures are commonly seen. They regularly result in a patient&rsquo;s decreased best corrected visual acuity and decreased contrast sensitivity. These changes are only seen in biologic tissue and the etiology has been elusive. A thermal response has been theorized and was investigated in this research. In addition, intraocular lenses using a mechanically deforming interface to change their power in order to duplicate natural accommodation have been developed. The deforming interface(s) induce optical aberrations due to irregular deformations. Design efforts have centered on minimizing these deformations. Both of the ophthalmic applications have been analyzed using finite element analysis (FEA) to understand their inherent optical properties. </p><p> <b>Methods:</b> FEA modeling of thermal theory has been applied to verify that excimer laser induced collagen contraction creates corneal surface irregularities and central islands. A mathematical model which indicates the viability of the theory was developed. The modeling results were compared to post ablation changes in eyes utilizing an excimer (ArF 193 nm), as well as non-ablative thermal heating in eyes with a CO<sub>2</sub> laser. </p><p> Addition modeling was performed on an Intraocular lens prototype measuring of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were utilized to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force. </p><p> Results: The predictive model shows significant irregular central buckling formation and irregular folding. The amount of collagen contraction necessary to cause significant surface changes is very small (0.3%). Uniform scanning excimer laser ablation to corneal stroma produces a significant central steepening and peripheral flattening in the central 3mm diameter. Isolated thermal load from uniform CO<sub>2</sub> laser irradiation without ablation also produces central corneal steepening and paracentral flattening in the central 3mm diameter. </p><p> The iterative mathematical modeling based upon the intraocular lens prototype yielded maximized optical and mechanical performance through varied input mechanical and optical parameters to produce a maximized visual Strehl ratio and a minimized force requirement. </p><p> <b>Conclusions:</b> The thermal load created by laser irradiation creates a characteristic spectrum of morphologic changes on the porcine corneal stromal surface which correlates to the temperature rise and is not seen inorganic, isotropic material. The highly similar surface changes seen with both lasers are likely indicative of temperature induced transverse collagen fibril contraction and stress re-distribution. Refractive procedures which produce significant thermal load should be cognizant of these morphological changes. </p><p> The optimized intraocular lens operates within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye&rsquo;s natural focusing feedback, while maintaining image quality in the space available. Optimized optical and mechanical performance parameters were delineated as those which minimize both asphericity and actuation pressure. The methodology combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary trials.</p>
4

Super-resolution video microscopy of live cells by structured illumination.

Chhun, Bryant B. January 2009 (has links)
Thesis (M.S.)--University of California, San Francisco, 2009. / Source: Masters Abstracts International, Volume: 48-03, page: 1526. Adviser: Orion Weiner.
5

Fluorescence correlation spectroscopy : ultrasensitive detection in clear and turbid media /

Tahari, Abdel Kader. January 2006 (has links)
Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006. / Source: Dissertation Abstracts International, Volume: 67-11, Section: B, page: 6252. Adviser: Enrico Gratton. Includes bibliographical references (leaves 80-87) Available on microfilm from Pro Quest Information and Learning.

Page generated in 0.1037 seconds