Spelling suggestions: "subject:"engineering, matematerials cience (0794)"" "subject:"engineering, matematerials cscience (0794)""
1 |
The effects of using aliovalent doping in cerium bromide scintillation crystalsHarrison, Mark J. January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Douglas S. McGregor / Strengthening the crystal lattice of lanthanide halides, which are brittle, anisotropic, ionic crystals may increase the availability and ruggedness of these scintillators for room-temperature γ-ray spectroscopy applications. Eight dopants for CeBr[subscript]3, including CaBr[subscript]2, SrBr[subscript]2, BaBr[subscript]2, ZrBr[subscript]4, HfBr[subscript]4, ZnBr[subscript]2, CdBr[subscript]2, and PbBr[subscript]2, were explored at two different doping levels, 500ppm and 1000ppm, in an effort to identify potential aliovalent strengthening agents which do not adversely affect scintillation performance. All dopants and doping levels exhibited improved ingot yields over the undoped case, indicating an improvement in the ease of crystal growth.
Scintillation performance was gauged using four key metrics. Scintillation emission spectra or, rather, radioluminescence spectra were recorded using x-ray irradiation. Total light yield was estimated through pulse height comparison with bismuth germanate (BGO) scintillators. Scintillation kinetics were checked by measuring single interaction pulses directly output by a fast response PMT. Finally, light yield proportionality was measured using a Compton coincidence system.
Samples from each ingot were harvested to benchmark their performance with the four metrics. Of the eight dopants explored, only BaBr[subscript]2 and PbBr[subscript]2 clearly altered scintillation spectral emission characteristics significantly. The remaining dopants, CaBr[subscript]2, SrBr[subscript]2, ZrBr[subscript]4, HfBr[subscript]4, CdBr[subscript]2 and ZnBr[subscript]2, altered scintillation performance to a lesser degree. No dopant appeared to affect light yield proportionality, nor did any drastically alter the light decay characteristics of CeBr[subscript]3. HfBr[subscript]4 and ZnBr[subscript]2-doped CeBr[subscript]3 exhibited the highest light yields, significantly higher than the undoped CeBr[subscript]3 samples tested.
Finally, aliovalent doping appeared to greatly improve CeBr[subscript]3 ingot yields, regardless of the dopant, thus it is a promising method for improving crystal strength while not deleteriously affecting scintillation performance. HfBr[subscript]4 and ZnBr[subscript]2 both demonstrated high performance without any noticeable negative side-effects and are prime candidates for future study.
|
2 |
Experimental characterization of the compressive and shear behavior of square cell titanium honeycombParsons, Ryan Tyler January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Kevin B. Lease / The purpose of this study was to experimentally characterize the compressive and shear behavior of square cell titanium honeycomb cores according to the American Society of Testing and Materials Standards C 365-05 and C 273-06. By varying the honeycomb cell size and height as well as the foil thickness, many configurations of titanium honeycomb were manufactured utilizing a laser welding and expansion method. The test matrix consisted of 1080 compression and 1080 shear specimens. The compression specimens were split evenly into stabilized and unstabilized tests, and the shear specimens were split evenly to test three different shear orientations. At the conclusion of the characterization, a comprehensive statistical analysis was performed on the data. It was determined that both the compressive and shear strengths have a strong dependence on the relative density of the honeycomb. The compressive strength was found to be slightly affected by the presence of a stabilizing face sheet, and largely unaffected by specimen core height. The compressive modulus was affected by both the core height and the presence of a face sheet. Shear strength was found to decrease with increasing core height and was influenced by the shear orientation. Additionally, the rate of increase of shear modulus with respect to relative density was proportional to core height. Although no clear trend was observed, orientation did seem to have an effect on shear modulus. The compression and shear behavior of the honeycomb was compared with experimental results of honeycomb from existing publications and found to be consistent.
|
3 |
Sublimation growth of ALN bulk crystals and high-speed CVD growth of SiC epilayers, and their characterizationLu, Peng January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / The effects of process conditions on the material’s properties were investigated for the sublimation growth of aluminum nitride and the epitaxial growth of silicon carbide. Since the mid 1990’s, these semiconductors have made new types of high power electronics and short wavelength optoelectronics that were never before feasible.
The sublimation growth of AlN crystals on SiC seeds was carried out to produce high quality AlN bulk crystals. Si-face, 3.5 º off-axis 6H-SiC (0001) and 8 º off-axis 4H-SiC (0001) wafers were used as the substrates. An investigation of the initial growth demonstrated 1800 – 1850ºC was the optimum temperature for AlN growth. By optimizing the temperature gradient, large area AlN layer was deposited. Consecutive growths and continuous growth were performed to enlarge the crystal thickness. Single-crystalline AlN layers, each with a thickness of 2 mm and a diameter of 20 mm, were produced. X-ray diffraction confirmed the grown AlN had good crystal quality. Approximately 3 – 6 at% of Si and 5 – 8 at% of C were detected in the crystals by x-ray photoelectron spectroscopy, which came from the decomposition of SiC seeds and the degradation of the graphite components in the furnace. Molten KOH/NaOH etching revealed the dislocation density decreased from 108 cm-2 to 106 cm-2 as the AlN layer thickness increased from 30 μm to 2 mm.
Epitaxial growth of SiC was carried out in a chemical vapor deposition system. High-quality 6H-SiC and 4H-SiC homoepitaxial films were produced at growth rates up to 80 μm/hr by using a novel single precursor, methyltrichlorosilane (MTS). Inclusions of 3C-SiC were circumvented by employing 8º mis-orientated substrates. Adjusting the H2/Ar flow ratio in the carrier gas effectively changed the C/Si ratio in the gas phase due to the reaction between H2 and the graphite heater; thereby, influencing surface roughness and dislocation density. Low H2/Ar ratios of 0.1 and 0.125 produced smooth surfaces without step-bunching. Higher H2/Ar ratios of 0.2 and 0.33 enhanced the conversion of basal plane dislocations into threading edge dislocations, and reduced the density of basal plane dislocations to approximately 600 cm-2.
|
4 |
Epitaxial growth of silicon carbide on on-axis silicon carbide substrates using methyltrichlorosilane chemical vapor depositionSwanson, Kyle January 1900 (has links)
Master of Science / Department of Chemical Engineering / James H. Edgar / 4H-silicon carbide (4H-SiC) is a wide band gap semiconductor with outstanding capabilities for high temperature, high power, and high frequency electronic device applications. Advances in its processing technology have resulted in large micropipe-free single crystals and high speed epitaxial growth on off-axis silicon face substrates. Extraordinarily high growth rates
of high quality epitaxial films (>100 [Mu]m per hour) have been achieved, but only on off-axis substrates (misoriented 4° to 8° from the (0001) crystallographic plane). There is a strong incentive to procure an on-axis growth procedure, due to the excessive waste of high quality single crystal associated with wafering off-axis substrates.
The purpose of this research was to develop a reliable process for homoepitaxial growth of 4H-SiC on on-axis 4H-SiC. Typically the use of on-axis SiC for epitaxial growth is undesired due to the increased probability of 3C-SiC inclusions and polycrystalline growth. However, it is believed that the presence of chlorine during reaction may reduce the presence of 3C-SiC and improve the quality of the epitaxial film. Therefore homoepitaxial SiC was deposited using methyltrichlorosilane (MTS) and ethane sources with carrier gases consisting of argon-hydrogen mixtures. Ethane was used to increase the C/Si ratio, to aid in the prevention of 3C-SiC, and to help eliminate silicon droplets deposited during epitaxial growth. Deposition occurred in a
homemade, quartz, cold wall chemical vapor deposition reactor.
Epitaxial films on on-axis 4H-SiC were deposited without the presence of 3C-SiC inclusions or polycrystalline SiC, as observed by defect selective etching, scanning electron microscopy and optical microscopy. Large defect free areas, [similar to]5 mm[superscript]2, with epitaxial film thicknesses of [similar to]6 [Mu]m were grown on on-axis 4H-SiC. Epitaxial films had approximately an 80%, [similar to]20 cm[superscript]-2, decrease in defect density as compared to the substrates. The growth rate was independent of face polarity and orientation of the substrate. The optimal temperature for hydrogen etching, to promote the smoothest epitaxial films for on-axis substrates (both C- and Si-polarities), is [similar to]1550 °C for 10 minutes in the presence of 2 slm hydrogen. The optimum C/Si ratio for epitaxial growth on on-axis 4H-SiC is 1; excess carbon resulted in the codeposition of graphite and cone-shaped silicon carbide defects.
|
5 |
Numerical modeling and experimental investigation of laser-assisted machining of silicon nitride ceramicsShen, Xinwei January 1900 (has links)
Doctor of Philosophy / Department of Industrial & Manufacturing Systems Engineering / Shuting Lei / Laser-assisted machining (LAM) is a promising non-conventional machining technique for advanced ceramics. However, the fundamental machining mechanism which governs the LAM process is not well understood so far. Hence, the main objective of this study is to explore the machining mechanism and provide guidance for future LAM operations. In this study, laser-assisted milling (LAMill) of silicon nitride ceramics is focused.
Experimental experience reveals that workpiece temperature in LAM of silicon nitride ceramics determines the surface quality of the machined workpiece. Thus, in order to know the thermal features of the workpiece in LAM, the laser-silicon nitride interaction mechanism is investigated via heating experiments. The trends of temperature affected by the key parameters (laser power, laser beam diameter, feed rate, and preheat time) are obtained through a parametric study. Experimental results show that high operating temperature leads to low cutting force, good surface finish, small edge chipping, and low residual stress. The temperature range for brittle-to-ductile transition should be avoided due to the rapid increase of fracture toughness.
In order to know the temperature distribution at the cutting zone in the workpiece, a transient three-dimensional thermal model is developed using finite element analysis (FEA) and validated through experiments. Heat generation associated with machining is considered and demonstrated to have little impact on LAM. The model indicates that laser power is one critical parameter for successful operation of LAM. Feed and cutting speed can indirectly affect the operating temperatures.
Furthermore, a machining model is established with the distinct element method (or discrete element method, DEM) to simulate the dynamic process of LAM. In the microstructural modeling of a β-type silicon nitride ceramic, clusters are used to simulate the rod-like grains of the silicon nitride ceramic and parallel bonds act as the intergranular glass phase between grains. The resulting temperature-dependent synthetic materials for LAM are calibrated through the numerical compression, bending and fracture toughness tests. The machining model is also validated through experiments in terms of cutting forces, chip size and depth of subsurface damage.
|
6 |
Concrete fluidity effects on bond of prestressed tendons for lightweight bridge girdersPerkins, Jake January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / With limited research being conducted solely on lightweight concrete prestressed bond
and current development-length equations based on tests performed on normal-weight members, more investigation on lightweight concrete prestress bond is necessary. Additionally, the effects of water-reducing agents on normal-weight and lightweight concrete need further exploration. The aim of this study was to examine these areas using two locally available lightweight aggregates from Kansas and one from North Carolina to determine if lightweight prestressed concrete bridge girders are a useful alternative for the Kansas Department of Transportation. The lightweight concrete mixes developed were capable of attaining 5000 psi compressive strength in 16 hours and 7000 psi in 28 days. During the large block pull-out test, the average maximum force at pull-out and first observable slip was higher for the block cast with a three inch slump then the companion specimen poured at a nine-inch slump. During flexural testing, the two beams not reaching nominal moment capacity, KC-9 and STA-9, failed in compression without strand end slip. The moment capacity was considerably greater for three-inch slump members than the companion specimen placed with nine-inch slump concrete.
|
7 |
Purification of Cd, Zn and Te for CdZnTe growthMeier, Michael January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Douglas S. McGregor / Purification of cadmium, zinc and tellurium was attempted to improve the quality of cadmium-zinc-telluride (CdZnTe) crystal growth. Specifically, vacuum distillation, zone refining and H[subscript]2 gas flow assisted zone refining were all investigated as methods to purify the constituent elements of CdZnTe. A unique multi-chamber ampoule was used to enable a purification sequence starting with double vacuum distillation followed by zone refining all without sample handling after the initial step. Modifications due to unique material properties of Cd and Zn were developed. Glow discharge mass spectroscopy (GDMS) analysis was used to measure impurity concentrations of 74 elements.
Cd purification using vacuum distillation proved to be an effective method to reduce the impurity level of 5N starting material to a purity between the range of 6N5 and 7N5, as measured using GDMS and laser ablation mass spectroscopy. Combined Zn double vacuum distillation and zone refining in an enclosed Ar atmosphere using 5N starting material yielded material with a purity between the range of 5N8 to 6N8. Tellurium purification using combined double vacuum distillation followed by zone refining under continuous H[subscript]2 flow of 4N specified raw material resulted in high purity tellurium between the range of 6N3 and 7N4.
|
8 |
Synthesis and characterizations of novel magnetic and plasmonic nanoparticlesDahal, Naween January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Viktor Chikan / This dissertation reports the colloidal synthesis of iron silicide, hafnium oxide core-gold shell and water soluble iron-gold alloy for the first time. As the first part of the experimentation, plasmonic and superparamagnetic nanoparticles of gold and iron are synthesized in the form of core-shell and alloy. The purpose of making these nanoparticles is that the core-shell and alloy nanoparticles exhibit enhanced properties and new functionality due to close proximity of two functionally different components. The synthesis of core-shell and alloy nanoparticles is of special interest for possible application towards magnetic hyperthermia, catalysis and drug delivery. The iron-gold core-shell nanoparticles prepared in the reverse micelles reflux in high boiling point solvent (diphenyl ether) in presence of oleic acid and oleyl amine results in the formation of monodisperse core-shell nanoparticles.
The second part of the experimentation includes the preparation of water soluble iron-gold alloy nanoparticles. The alloy nanoparticles are prepared for the first time at relatively low temperature (110 oC). The use of hydrophilic ligand 3-mercapto-1-propane sulphonic acid ensures the aqueous solubility of the alloy nanoparticles. Next, hafnium oxide core-gold shell nanoparticles are prepared for the first time using high temperature reduction method. These nanoparticles are potentially important as a high κ material in semiconductor industry.
Fourth, a new type of material called iron silicide is prepared in solution phase. The material has been prepared before but not in a colloidal solution. The Fe3Si obtained is superparamagnetic. Another phase β-FeSi2 is a low band gap (0.85 eV) semiconductor and is sustainable and environmentally friendly.
At last, the iron monosilicide (FeSi) and β-FeSi2 are also prepared by heating iron-gold core-shell and alloy nanoparticles on silicon (111) substrate. The nucleation of gaseous silicon precursor on the melted nanoparticles results the formation of nanodomains of FeSi and β-FeSi2.
A practical application of these nanoparticles is an important next step of this research. Further improvement in the synthesis of β-FeSi2 nanoparticles by colloidal synthetic approach and its application in solar cell is a future goal.
|
9 |
Finite element and population balance models for food-freezing processesMiller, Mark J. January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Xiao J. Xin / Energy consumption due to dairy production constitutes 10% of all energy usage in the U.S. Food Industry. Improving energy efficiency in food refrigeration and freezing plays an important role in meeting the energy challenges of today. Freezing and hardening are important but energy-intensive steps in ice cream manufacturing. This thesis presents a series of models to address these issues. The first step taken to model energy consumption was to create a temperature-dependent ice cream material using empirical properties available in the literature. The homogeneous ice cream material is validated using finite element analysis (FEA) and previously published experimental findings. The validated model is then used to study the efficiency of various package configurations in the ice cream hardening process. The next step taken is to consider product quality by modeling the ice crystal size distribution (CSD) throughout the hardening process. This is achieved through the use of population balance equations (PBE). Crystal size and corresponding hardened ice cream coarseness can be predicted through the PBE model presented in this thesis. The crystallization results are validated through previous experimental study. After the hardening studies are presented, the topic of continuous freezing is discussed. The actual ice cream continuous freezing process is inherently complex, and therefore simplifying assumptions are utilized in this work. Simulation is achieved through combined computational fluid dynamics (CFD) and PBE modeling of a sucrose solution. By assuming constant fluid viscosity, a two-dimensional cross section is able to be employed by the model. The results from this thesis provide a practical advancement of previous ice cream simulations and lay the groundwork for future studies.
|
10 |
Optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor depositionUgolini, Cristofer Russell January 1900 (has links)
Doctor of Philosophy / Department of Physics / Hongxing Jiang / The optical and structural properties of Er-doped GaN/InGaN materials and devices synthesized by metal organic chemical vapor deposition (MOCVD) were investigated. Er-doped GaN via MOCVD emits a strong photoluminescence (PL) emission at 1.54 um using both above and below-bandgap excitation. In contrast to other growth methods, MOCVD-grown Er-doped GaN epilayers exhibit virtually no visible emission lines. A small thermal quenching effect, with only a 20% decrease in the integrated intensity of the 1.54 um PL emission, occurred between 10 and 300 K. The dominant bandedge emission of Er-doped GaN at 3.23 eV was observed at room temperature, which is red-shifted by 0.19 eV from the bandedge emission of undoped GaN. An activation energy of 191 meV was obtained from the thermal quenching of the integrated intensity of the 1.54 um emission line.
It was observed that surface morphology and 1.54 um PL emission intensity was strongly dependent upon the Er/NH3 flow rate ratio and the growth temperature. XRD measurements showed that the crystalline ordering of the (002) plane was relatively unperturbed for the changing growth environment. Least-squares fitting of 1.54 um PL measurements from Er-doped GaN of different growth temperatures was utilized to determine a formation energy of 1.82 ± 0.1 eV for the Er-emitting centers.
The crystalline quality and surface morphology of Er-doped InGaN (5% In fraction) was nearly identical to that of Er-doped GaN, yet the PL intensity of the 1.54 um emission from Er-doped InGaN (5% In fraction) was 16 x smaller than that of Er-doped GaN. The drop in PL intensity is attributed to the much lower growth temperature in conjunction with the high formation energy of the Er- emitting centers. Er-doped InGaN grown at fixed growth temperature with different growth pressures, NH3 flow rates, and Ga flow rates was also investigated, and showed that increased In fractions also resulted in a smaller 1.54 um PL intensity.
Er-doped InGaN p-i-n diodes were synthesized and tested. The electroluminescence (EL) spectra under forward bias shows strong Er based emission in the infrared and visible region. The different emission lines from EL spectra in contrast to PL spectra implies different excitation methods for the Er based emission in the p-i-n diode than in the PL excited epilayer.
|
Page generated in 0.1276 seconds