Spelling suggestions: "subject:"engineering, bimechanical|fhysics, 1heory"" "subject:"engineering, bimechanical|fhysics, btheory""
1 |
A study of mesoscale simulations for planar shock experiments on heterogeneous granular materialsSchumaker, Merit G. 07 May 2015 (has links)
<p> There is an interest in producing accurate and reliable computer simulations to predict the dynamic behavior of heterogeneous materials and to use these simulations to gain further insight into experimental results. In so doing, a more complete understanding of the multiple-length scales involved in heterogeneous material compaction can be obtained. Mesoscale computer simulations of dynamically shocked materials have proven to be a beneficial resource in unraveling data not observed in planar shock impact experiments, such as stress and temperature interactions between grains. </p><p> The modeled mono-dispersed geometry of particles, the densities of each material, equations of state, material properties and many other factors affect the simulated outcomes. By studying and analyzing these variables, many of which highlight the difference between experimental and simulated results, there manifests additional insight into the shock dynamics of the different heterogeneous granular materials. The heterogeneous materials in this study were created both by a "shake and pack" method, where individual grains were randomly seeded into the computational domain and grown until the grains matched the experimental volume fraction and average diameter. </p><p> Three planar shock experiments were utilized to validate simulation models and parameters: 1. Brake pad powder compaction at Marquette University, 2. Dry sand experiments at Georgia Tech, and 3. Release of dry sand at Cambridge University. Planar shock impact experiments were simulated using two different hydrocode packages: CTH and iSALE. Validated models are then used to setup future dry, water, and possible ice saturated sand release experiments. Particle velocity and stress traces obtained from the computer simulations were compared to VISAR, PDV, and Manganin gage measurements obtained from experiments. The results from simulations are compared to experiments and discussed in this document.</p>
|
Page generated in 0.1247 seconds