Spelling suggestions: "subject:"engineering, robotics."" "subject:"engineering, cobotics.""
161 |
Conservative decision-making and inference in uncertain dynamical systemsCalliess, Jan-Peter January 2014 (has links)
The demand for automated decision making, learning and inference in uncertain, risk sensitive and dynamically changing situations presents a challenge: to design computational approaches that promise to be widely deployable and flexible to adapt on the one hand, while offering reliable guarantees on safety on the other. The tension between these desiderata has created a gap that, in spite of intensive research and contributions made from a wide range of communities, remains to be filled. This represents an intriguing challenge that provided motivation for much of the work presented in this thesis. With these desiderata in mind, this thesis makes a number of contributions towards the development of algorithms for automated decision-making and inference under uncertainty. To facilitate inference over unobserved effects of actions, we develop machine learning approaches that are suitable for the construction of models over dynamical laws that provide uncertainty bounds around their predictions. As an example application for conservative decision-making, we apply our learning and inference methods to control in uncertain dynamical systems. Owing to the uncertainty bounds, we can derive performance guarantees of the resulting learning-based controllers. Furthermore, our simulations demonstrate that the resulting decision-making algorithms are effective in learning and controlling under uncertain dynamics and can outperform alternative methods. Another set of contributions is made in multi-agent decision-making which we cast in the general framework of optimisation with interaction constraints. The constraints necessitate coordination, for which we develop several methods. As a particularly challenging application domain, our exposition focusses on collision avoidance. Here we consider coordination both in discrete-time and continuous-time dynamical systems. In the continuous-time case, inference is required to ensure that decisions are made that avoid collisions with adjustably high certainty even when computation is inevitably finite. In both discrete-time and finite-time settings, we introduce conservative decision-making. That is, even with finite computation, a coordination outcome is guaranteed to satisfy collision-avoidance constraints with adjustably high confidence relative to the current uncertain model. Our methods are illustrated in simulations in the context of collision avoidance in graphs, multi-commodity flow problems, distributed stochastic model-predictive control, as well as in collision-prediction and avoidance in stochastic differential systems. Finally, we provide an example of how to combine some of our different methods into a multi-agent predictive controller that coordinates learning agents with uncertain beliefs over their dynamics. Utilising the guarantees established for our learning algorithms, the resulting mechanism can provide collision avoidance guarantees relative to the a posteriori epistemic beliefs over the agents' dynamics.
|
162 |
Decision making under uncertaintyMcInerney, Robert E. January 2014 (has links)
Operating and interacting in an environment requires the ability to manage uncertainty and to choose definite courses of action. In this thesis we look to Bayesian probability theory as the means to achieve the former, and find that through rigorous application of the rules it prescribes we can, in theory, solve problems of decision making under uncertainty. Unfortunately such methodology is intractable in realworld problems, and thus approximation of one form or another is inevitable. Many techniques make use of heuristic procedures for managing uncertainty. We note that such methods suffer unreliable performance and rely on the specification of ad-hoc variables. Performance is often judged according to long-term asymptotic performance measures which we also believe ignores the most complex and relevant parts of the problem domain. We therefore look to develop principled approximate methods that preserve the meaning of Bayesian theory but operate with the scalability of heuristics. We start doing this by looking at function approximation in continuous state and action spaces using Gaussian Processes. We develop a novel family of covariance functions which allow tractable inference methods to accommodate some of the uncertainty lost by not following full Bayesian inference. We also investigate the exploration versus exploitation tradeoff in the context of the Multi-Armed Bandit, and demonstrate that principled approximations behave close to optimal behaviour and perform significantly better than heuristics on a range of experimental test beds.
|
Page generated in 0.0836 seconds