Spelling suggestions: "subject:"engineering|matematerials science"" "subject:"engineering|datenmaterials science""
331 |
AB(2)C(4) semiconducting compounds crystal growth, intrinsic defects and optical properties.Golea, Mostefa. January 1988 (has links)
No description available.
|
332 |
Properties of the semimagnetic semiconductor alloy Zn2x(CuIn)yMn2zTe2(x+y+z=1).Neal, Champa R. January 1987 (has links)
No description available.
|
333 |
Mesures de gain et caractérisation optique du CdIn₄S₆ et MgIn₄S₆.Charlebois, Alain. January 1989 (has links)
No description available.
|
334 |
Crystallography and optical properties of the (Cu 1-x Agx) (Ga1-y Iny) (Se1-z Tez)2 alloys.Avon, Julie Elizabeth. January 1983 (has links)
No description available.
|
335 |
Evaluation of discrete element analysis for the mechanics of granular assembliesAcheampong, Kofi Boakye 01 January 1996 (has links)
The micro-structural approach, which relates the mechanical behavior of a material to its micro-fabric and the properties of the constituent particles, is a more rational way of modeling the mechanics of granular materials. Within this approach is the numerical simulation method in the framework of the Discrete Element Method (DEM) of analysis. Instead of a continuum, DEM treats granular material as an assemblage of distinct particles, each governed by the laws of classical mechanics. Deformation analysis of inter-particle contacts does not imply continuity at particle boundaries. As this technique has evolved, it has been used in a wide variety of research applications in mechanics and Geotechnical engineering. However, there are some drawbacks to its use especially in the simulation and interpretation of real granular material behavior. Inadequate understanding of the micro-kinematics of particle rotation and contact rolling have rendered most DEM models ineffective in translating its usefulness to the overall study of the mechanics of granular assemblies. This study evaluated DEM analysis for the purpose of improving computer simulation models of granular materials in order to enhance the capability of predicting real granular behavior and its usefulness as an alternative to full-scale modeling. Implicit and explicit numerical integration algorithms are discussed on the basis of a generalized collocation formulation. In relation to DEM, it is shown that the explicit velocity Verlet method improves convergence, stability and accuracy. Using the concept of rolling friction, closed-form expressions were derived for contact rolling stiffness for both 2-D and 3-D problems. The developed DEM simulation model shows that the effects of rolling friction on the stress-strain behavior, shear strength and the development of shear bands are very significant. The study proves that simulation of granular media is greatly enhanced and the microstructure and micro-mechanisms are better revealed. Validation tests showed good agreement between DEM simulation results and available experimental tests on rod assemblies. Comparisons of heterogeneous deformation fields and the uniform strain fields indicate the need to incorporate a high gradient of strain theory in predicting the constitutive law of granular materials.
|
336 |
Preparation and characterization of highly oriented films and membranes of zeolite ABoudreau, Laura Catherine 01 January 1999 (has links)
Zeolite NaA films and membranes have been prepared using both in situ and seeded growth preparation processes. Films prepared using in situ preparations have shown this technique to be unsuitable for further development due to its inability to control the film microstructure, poor reproducibility, and dissolution of the substrate resulting in amorphous material incorporated in the film. Seeded growth, however, shows the ability to prepare highly oriented zeolite NaA films, the first zeolite films reported with this high degree of orientation. For the seeded growth preparation, nanometer sized zeolite particles are used in suspension to cast seed films. These films are prepared using dip coating, film casting, and electrostatic deposition. The seed films show a high degree of orientation with the [h00] planes of the seed crystals aligned parallel to the substrate surface. A higher degree of orientation where the particles are deposited in a hexagonal packed array can be achieved using dip coating with extremely slow withdrawal rates (∼1 cm/hr). These seed films are then subjected to a secondary growth process to eliminate the interzeolitic pores and form continuous zeolite layers. This has been achieved with clear solutions or gels resulting in continuous films 0.5 to 7μm thick with a high degree of orientation. The regrowth mechanism was investigated and results indicate that the growth of zeolite A films proceeds by multiple processes including epitaxial growth of the seeds and deposition of particles from solution. The membranes have been used for alcohol/water pervaporation. The membranes are highly selective for water and show selectivities >3,100 for water using (90/10) ethanol/water feed systems. In permeation measurements, these membranes show no selectivities other than Knudsen for permanent gases. Unlike Knudsen diffusion, these membranes show increasing permeation with increasing temperature. This indicates the probability of small defects in the films around 10Å. The defects shown by the gas permeation measurements indicate that cracks have formed in the membranes, possibly upon drying. It is believed that these are caused by the contraction of the zeolite NaA structure upon removal of water, which gives a 0.16% contraction in the dimensions of the unit cell.
|
337 |
Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domainsMandare, Prashant N 01 January 2007 (has links)
Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low frequencies, there exists an upper and lower bound on strain amplitude where mono-domain textures can be obtained. Upon alignment, the modulus drops by about 30%. Measurement of rheological properties offers an indirect method to distinguish between polycrystalline structure and monodomain texture.
|
338 |
Non-contact measurement of creep resistance of ultra-high-temperature materialsLee, Jonghyun 01 January 2007 (has links)
Continuing pressures for higher performance and efficiency in energy conversion and propulsion systems are driving ever more demanding needs for new materials which can survive high stresses at the elevated temperatures. In such severe environments, the characterization of creep properties becomes indispensable. Conventional techniques for the measurement of creep are limited to about 1,700°C. A new method which can be applied at temperatures higher than 2,000°C is strongly demanded. This research presents a non-contact method for the measurements of creep resistance of ultra-high-temperature materials. Using the electrostatic levitation (ESL) facility at NASA MSFC, a spherical sample was rotated quickly enough to cause creep deformation due to the centripetal acceleration. The deformation of the sample was captured with a digital camera, and the images were then analyzed to measure creep deformation and to estimate the stress exponent in the constitutive equation of the power-law creep. To compare experimental results, numerical and analytical analyses on creep deformation of a rotating sphere have been conducted. The experimental, numerical, and analytical results showed a good agreement with one another.
|
339 |
Atomic-scale analysis of plastic deformation in thin-film forms of electronic materialsKolluri, Kedarnath 01 January 2009 (has links)
Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films’ structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film’s free surface and grows into the bulk of the film due to dislocation glide. The role of surface orientation in the strain relaxation of these strained thin films under biaxial tension is discussed and the stability of the fcc crystalline phase is analyzed. Finally, the mechanical response during dynamic tensile straining of pre-treated fcc metallic thin films with varying propensities for formation of stacking faults is analyzed. Interactions between dislocations and stacking faults play a significant role in the cross-slip and eventual annihilation of dislocations in films of fcc metals with low-to-medium values of the stable-to-unstable stacking-fault energy ratio, γs/γu. Stacking-fault-mediated mechanisms of dislocation depletion in these ultrathin fcc metallic films are identified and analyzed. Additionally, a theoretical analysis for the kinetics of strain relaxation in Si1-xGex (0 ≤ x ≤ 1) thin films grown epitaxially on Si(001) substrates is conducted. The analysis is based on a properly parameterized dislocation mean-field theoretical model that describes plastic-deformation dynamics due to threading dislocation propagation; the analysis addresses strain relaxation kinetics during both epitaxial growth and thermal annealing, including post-implantation annealing. The theoretical predictions for strain relaxation as a function of film thickness in Si0.80Ge0.20 /Si(001) samples annealed after growth, either unimplanted or after He+ implantation, are in excellent agreement with reported experimental measurements.
|
340 |
The construction of palladium and palladium-alloy supported membranes for hydrogen separation using supercritical fluid depositionFisher, Scott M 01 January 2004 (has links)
The separation of hydrogen from other light gases is of particular importance to the chemical process industry. Membrane based processes offer a cost effective alternative to traditional processing while allowing the combination of separation and reaction in a single unit. Dense palladium or palladium alloy films are a natural choice for hydrogen separation due to their potential infinite selectivity for hydrogen. In this dissertation we investigated the construction of palladium-based supported hydrogen separation membranes using Supercritical Fluid Deposition (SFD). Compared to other deposition methods, SFD offers an effective metal deposition approach for porous materials due to its high precursor solubility, rapid mass transfer, and lack of surface tension. Three palladium precursors were evaluated for membrane construction in terms of thermal stability, reactivity and surface selectivity. Pd-X (X = Ag, Ni, or Cu) co-depositions were studied to determine the potential of SFD for direct alloy deposition. Intrinsic to effective membrane construction is the control of membrane location and thickness. Several different reactor and reactants geometries were utilized to control membrane location. An opposed reactants geometry was used to produce sub-surface membranes at controlled depths (80–600 μm) in porous α-alumina. A same-sided reactants geometry was used to produce surface films ranging in thickness from 100 nm to 5 μm on numerous support materials. Membranes were characterized using a variety of techniques including: SEM, XPS, XRD, EPMA, and gas permeation.
|
Page generated in 0.1369 seconds