• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effectiveness of Contextual Learning on Physics Achievement in Career Technical Education

Arcand, Scott Andrew 02 August 2017 (has links)
<p> The purpose of this casual-comparative study was to determine if students being taught the Minnesota Science Physics Standards via contextual learning methods in Project Lead the Way (PLTW) Principles of Engineering or the PLTW Aerospace Engineering courses, taught by a Career Technical Education (CTE) teacher, achieve at the same rate as students in a physics course taught by a science teacher. The PLTW courses only cover the standards taught in the first trimester of physics. The PLTW courses are two periods long for one trimester. Students who successfully pass the PLTW Principles of Engineering course or the PLTW Engineering Aerospace course earn one-half credit in physics and one-half elective credit. The instrument used to measure student achievement was the district common summative assessment for physics. The Common Summative Assessment scores were pulled from the data warehouse from the first trimester of the 2013-2014 school year. Implications of the research address concepts of contextual learning especially in the Career Technical Education space. The mean score for Physics students (30.916) and PLTW Principles of Engineering students (32.333) was not statistically significantly different. Students in PLTW Principles of Engineering achieved at the same rate as students in physics. Due to the low rate of students participating in the Common Summative Assessment in PTLW Aerospace (four out of seven students), there is not enough data to determine if there is a significant difference in the Physics A scores and PLTW Aerospace Engineering scores.</p><p>
2

Virtual Solar Energy Center| A Case Study of the Use of Advanced Visualization Techniques for the Comprehension of Complex Engineering Products and Processes

Ritter, Kenneth August, III 01 December 2016 (has links)
<p> Industry has a continuing need to train its workforce on recent engineering developments, but many engineering products and processes are hard to explain because of limitations of size, visibility, time scale, cost, and safety. The product or process might be difficult to see because it is either very large or very small, because it is enclosed within an opaque container, or because it happens very fast or very slowly. Some engineering products and processes are also costly or unsafe to use for training purposes, and sometimes the domain expert is not physically available at the training location. All these limitations can potentially be addressed using advanced visualization techniques such as virtual reality. This dissertation describes the development of an immersive virtual reality application using the Six Sigma DMADV process to explain the main equipment and processes used in a concentrating solar power plant. The virtual solar energy center (VEC) application was initially developed and tested in a Cave Automatic Virtual Environment (CAVE) during 2013 and 2014. The software programs used for development were SolidWorks, 3ds Max Design, and Unity 3D. Current hardware and software technologies that could complement this research were analyzed. The NVIDA GRID Visual Computing Appliance (VCA) was chosen as the rendering solution for animating complex CAD models in this application. The MiddleVR software toolkit was selected as the toolkit for VR interactions and CAVE display. A non-immersive 3D version of the VEC application was tested and shown to be an effective training tool in late 2015. An immersive networked version of the VEC allows the user to receive live instruction from a trainer being projected via depth camera imagery from a remote location. Four comparative analysis studies were performed. These studies used the average normalized gain from pre-test scores to determine the effectiveness of the various training methods. With the DMADV approach, solutions were identified and verified during each iteration of the development, which saved valuable time and resulted in better results being achieved in each revision of the application, with the final version having 88% positive responses and same effectiveness as other methods assessed.</p>
3

How Children Solve Engineering Design Problems| A Study of Design Process Patterns Using Sequential Analysis

Sung, Euisuk 25 September 2018 (has links)
<p> The ability to solve problems in creative and innovative ways is more critical than ever in today&rsquo;s rapidly-changing society. To support these demands, the educational curricula in the U.S. and other countries adopted engineering design as a learning platform to promote students&rsquo; creativity, communication and design skills, and innovative problem-solving abilities. When using engineering design, many educators use a variety of engineering design process models. However, little is known about the problem-solving processes in terms of design cognition. Therefore, in this study, the researcher examined the problem-solving patterns of students who engage in engineering design using a cognitive pattern approach. </p><p> This study was conducted as part of the NSF-funded Science Learning through Engineering Design (SLED) project for elementary science students&rsquo; grades three to six. The researcher adopted the sequential analysis method to identify students' problem-solving patterns. Sequential analysis is a statistical research method to detect behavioral or psychological patterns by analyzing repeated cognitive events. The researcher sampled a total of 48 Concurrent Think-Aloud (CTA)sessions to examine the statistical significance of the sequential analysis. Two coders independently conducted data coding using Halfin&rsquo;s codes and confirmed a high range of inter-rater reliability with 97.22 % overall agreements and .86 Kappa coefficients. </p><p> The first research question aimed to identify the common cognitive strategies used by elementary science students in engineering design. The researchers pooled 48 CTA sessions to investigate the common cognitive strategies. The results indicated that the students largely concentrated on idea generation (DE) and sketching (MO) while less emphasized on questioning (QH), predicting (PR), managing (MA), and analyzing (AN). Moreover, the researcher confirmed that the upper level graders showed higher frequencies of cognitive strategies than lower graders. </p><p> The second research question aimed to investigate the common problem-solving sequential patterns of the engineering design process. After pooling the 48 CTA sessions, the researcher analyzed the statistical significances of two-event sequential patterns using GSEQ software. The statistical analysis yielded 14 significant two-event sequential patterns at the right-tailed 0.05 level and two-sided z distribution. Using the significant sequential patterns, the researcher built a pattern-based design process model. The model illustrates various iterations between the problem and solution strategies. The iterations in the problem strategies showed recursive cycles between defining the problem, analyzing, and managing. The solution focused iterations often began with questioning and proceeded to designing and modeling or designing and predicting. Moreover, the pattern model shows that managing and questioning played a key role in bridging problem and solution strategies. </p><p> The third research question was to identify how the cognitive strategies vary by design tasks. The researcher compared eight engineering design tasks used in the SLED project and confirmed that the structure of design problems was associated with the students&rsquo; problem-solving strategies. The results of data analysis showed that the participant students commonly emphasized on <i>Designing</i> and <i>Modeling</i> strategies. However, the researcher found that the modeling-driven design tasks required accurate mechanical designing lead students&rsquo; high concentrations on the <i> Modeling</i> strategy. </p><p> The last research question was to identify the differences of cognitive problem-solving patterns by design tasks. The study analyzed eight engineering design tasks and each task pooled six CTA sessions. The results confirmed that higher graders&rsquo; design tasks showed more complicated design pathways than younger graders&rsquo; design tasks. Additionally, the researcher found that each design task yielded distinct problem-solving pattern models. </p><p> Based on these results, the researcher suggested that engineering and technology educators need to highlight the multiple pathways of the engineering design process. The results showed many alternative problem-solving pathways rather than the standardized process models. The researcher also proposed that when adopting an engineering design approach in elementary curriculum, the program developers need to align its design procedure with learners&rsquo; sequential patterns of the design process. Engineering design problems provide rich opportunities to develop the cognitive abilities of young students. Additionally, the researcher encourages engineering and technology education programs to adopt multiple design process models aligned with the corresponding design problem types.</p><p>
4

Stereotype Threat| A Qualitative Study of the Challenges Facing Female Undergraduate Engineering Students

Entsminger, J. R., II 28 July 2017 (has links)
<p> From a sociocultural point of view, this qualitative case study explored how upper-level, female undergraduate engineering students perceived the possibility of or experience with stereotype threat as shaping their experiences. The study also investigated how these students explained their reasons for choosing their engineering major, the challenges they encountered in the major, and their reasons for persevering in spite of those challenges. Using Steele and Aronson&rsquo;s (1995) stereotype threat theory as a framework, and considering the documented underrepresentation of females in engineering, the study sought to examine how stereotype threat shaped the experiences of these students and if stereotype threat could be considered a valid reason for the underrepresentation. </p><p> The study was conducted at a large, four-year public university. First, students in the College of Engineering and Engineering Technology completed the Participant Screening Survey. Based on responses from the survey, six female engineering students from the college were identified and invited to participate in the study. The participants came from the following majors: Electrical Engineering, Industrial and Systems Engineering, and Mechanical Engineering. After receiving the study consent letter and agreeing to participate, the students were involved in a 90-minute focus group meeting, a 45-minute one-on-one interview, and a 30-minute follow-up interview. </p><p> After conducting the data collection methods, the data were then transcribed, analyzed, and coded for theme development. The themes that emerged coincided with each research question. The themes highlighted the complex interactions and experiences shared by the female engineering majors. </p><p> The female students were enveloped in an environment where there existed an increased risk for activating stereotype threat. In addition, the female students described feeling pushed to prove to themselves and to others that the negative stereotype that &lsquo;females are bad at engineering&rsquo; was untrue. The findings illustrated the need for systematic changes at the university level. Intervention recommendations were provided. In regards to female underrepresentation in science fields, including engineering, stereotype threat certainly had the potential to cause the female students to question themselves, their abilities, their choice of an academic major, and subsequently remove themselves from a hostile learning or working environment. Thus, educational institutions and workplace organizations are responsible for not only educating themselves regarding stereotype threat, but also for taking steps to alleviate the pernicious effects of stereotype threat.</p><p>
5

Developments in the analytical chemistry of arsenic to support teaching and learning through research in environmental topics

Ampiah-Bonney, Richmond Jerry 01 January 2006 (has links)
Two manifolds were designed to determine phosphate concentrations. The linear range for the 2-channel manifold was 0 to 30 mg L-1, and that for the 3-channel manifold was 0 to 400 mg L-1. Optimized conditions for the determination of arsenic with molybdenum-blue method were 0.5% w/v ascorbic acid, 0.4 M sulfuric acid in the molybdate solution and 80°C reaction temperature. A method for determination of arsenic using pervaporation flow injection hydride generation with visible spectrophotometry was developed. The method was sensitive for low arsenic concentrations (≤ 10 μg L-1), with sensitivity decreasing as arsenic concentration increased. There was no heating required, and the pervaporation membrane transferred only arsine. The analytical performance of two arsenic test kits was assessed. The Alpha Environmental kit cannot be recommended for arsenic measurement in water. The Hach kit was reliable for measuring arsenic concentrations greater than 70 μg L-1. A modified reaction tube was constructed that allowed NaBH4 solution to be delivered into the reaction mixture to replace zinc powder in the Hach kit, with no loss of gases. A more quantitative way of measuring arsenic using the Hach kit was developed by measuring the B-value of the color of jpeg images of test strips taken by a desktop scanner. Leersia oryzoides grown in soil amended with 110 mg kg-1arsenic extracted up to 305 μg g-1 and 272 μg g-1 arsenic into its shoots and roots respectively, giving a shoot:root quotient (SRQ) of 1.12 and phytoextraction coefficients (PEC) up to 1.3 in greenhouse experiments. Five supervised arsenic-related projects were reported. All except one of these reports fell short of the standards acceptable for a publishable manuscript. Factors such as high expectations, competitive entrance requirements and good motivation were responsible for the publishable report. For the remaining reports, problems with working in a team, relatively low expectations and lack of motivation were responsible. A laboratory-based research subject was successfully investigated in middle school classrooms. The program had been run for four consecutive years. Collaboration with the classroom teacher ensured that the program agreed with the school curriculum. All participants recommended continuation of this program.
6

A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

Yatchmeneff, Michele 31 March 2016 (has links)
<p>The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. </p><p> The Alaska Native Science &amp; Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to successfully complete advanced high school and college-level mathematics and science courses prior to high school graduation. </p><p> This study was designed to examine the motivations of Alaska Native high school students who participated in the ANSEP Precollege components to take advanced mathematics and science courses in high school or before college. Participants were 30 high school or college students, 25 of whom were Alaska Native, who were currently attending or had attended Alaska Native Science &amp; Engineering Program (ANSEP) Precollege components in high school. Self-determination theory was used as this study&rsquo;s theoretical framework to develop the semi-structured interview questions and also analyze the interviews. A thematic approach was used to analyze the interviews. The results of this study indicated that ANSEP helped the Alaska Native high school students gain a sense of autonomy, competence, and relatedness in order to be motivated to take advanced mathematics and science courses in high school or before college. In particular, Alaska Native high school students described that relatedness was an important element to them being motivated to take advanced mathematics and science courses. More specifically, participants reported that the Alaska Native community developed at the ANSEP Building and the relationships they developed with their Alaska Native high school peers and staff played an influential role in the motivation of these students. These findings are important because research suggests that autonomy and competence are more important elements than relatedness because they generate or maintain intrinsic motivation. Alaska Native high school students reported that ANSEP was more successful in helping them gain a sense of competence and relatedness than at helping them gain a sense of autonomy. More specifically, the reason the participants did not feel ANSEP developed their sense of autonomy was because ANSEP restricted their actions during the ANSEP Precollege study sessions. </p><p> My study implies that Alaska Native students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. Educators and STEM program leaders should incorporate elements of belonging into the educational environments they develop for their Alaska Native students. Future research should be conducted to determine if other racial minority students need to feel like they belong in order to be motivated to take and succeed at taking advanced mathematics and science courses. </p><p> My study also indicated that Alaska Native students were motivated to take advanced mathematics and science courses by knowing ANSEP would support them in future programming because of its longitudinal approach. Funding agencies of STEM programs should consider funding programs that provide a longitudinal approach to help Alaska Native students&rsquo; sense of competence grow. Future research should include studying other STEM programs to determine if they are motivating their students to take and succeed in advanced mathematics and science courses. </p>
7

From Roots to Star Trek| A Case Study on Successful Persistence of African American Male Engineering Majors

McGee, Marquis Cornelius 21 July 2018 (has links)
<p> The United States is competing on a global level for jobs in the STEM fields but retention and graduation rates in the engineering disciplines are lower than desired. African American males make up 5 % of the population of American colleges and universities (Strayhorn, 2010) and many of those pursuing an engineering degree often are not academically prepared for a career in engineering. There are African American males who have successfully persisted in engineering; however, limited research is provided about the success of these African American males and their experiences in engineering programs. The purpose of this study was to understand factors that impact successful persistence of African American male engineering majors at a predominantly White institution. Critical Race Theory was used as a framework to gain a broader scope of the underlying themes interwoven into the fabric of American society and a better understanding of the perceptions about African American male engineering majors. A qualitative case study was conducted to understand real-world phenomena through the experiences of successful African American male engineering majors. Using constant comparative analysis technique, two major themes were identified: Overcoming challenges and social identity. Early academic experiences, developing a positive identity, and a connection to others experiencing similar challenges were found to contribute to successful persistence.</p><p>
8

A Mixed-Methods Evaluation of Project Lead the Way Engineering Curriculum Goals within Missouri High Schools

Smith, Brian Eugene 19 April 2018 (has links)
<p> Within the confines of this study, the researcher investigated Project Lead the Way (PLTW) Engineering curriculum goals within Missouri high schools. The study measured Missouri PLTW teachers&rsquo; perceptions of various elements of the curriculum as well as state and national PLTW End of Course student assessment data to determine if a relationship existed between teachers&rsquo; perceptions of curriculum implementation and student performance, as measured through Missouri End of Course exams in various secondary engineering classes. In addition, the researcher conducted voluntary interviews with teachers, state administrators, and national representatives of PLTW to inquire about experiences with the PLTW Engineering curriculum. </p><p> Qualitatively, Missouri PLTW Engineering teachers expressed varied levels of satisfaction through a survey generated by the researcher, based upon national curriculum goals established by PLTW. Within the study, teachers&rsquo; perceptions reported students&rsquo; abilities to identify, formulate, and solve engineering problems were greater than students&rsquo; abilities to design and conduct experiments, as well as to demonstrate knowledge of and responsibility for engineering issues, including ethical and professional responsibilities. The researcher attributed this perception to students&rsquo; lack of professional experience and to PLTW curriculum not providing enough opportunities for students to gain real-world relevant experience using the content and strategies learned during instructional class time. </p><p> The intention of this study was to provide a framework to review and evaluate curriculum goals established by PLTW, Inc. Originally, the researcher looked at national goals for the program to determine the outcomes of PLTW&rsquo;s educational programming. However, much of the data was post-secondary related and the researcher wanted to maintain the quantitative nature of the study. Nonetheless, research could expand upon the framework to study any state in the nation through either a mixed-methods approach or the use of a quantitative study approach. The researcher recommends further research be conducted either by PLTW, Inc., through state PLTW affiliates or by other individuals to determine future outcomes of educational curriculum offered by PLTW. This could include engineering, biomedical science, computer science, middle school curriculum offered through Gateway to Technology (GTT), or through elementary curriculum offered through Launch.</p><p>

Page generated in 0.1178 seconds