• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancement of fidelity of surface measurement systems

Wang, W. L. January 1995 (has links)
No description available.
2

Parâmetros topográficos para avaliação, caracterização e controle tribológicos de superfícies de engenharia / Topographic parameters for evaluation, characterization and control of engineering surfaces

Freitas, Enio da Silva Rodrigues 24 November 2006 (has links)
A caracterização da topografia de superfícies de engenharia é muito importante em aplicações envolvendo atrito, lubrificação e desgaste. Esta prática teve inicio na década de 30 e até os dias atuais vários esforços são desprendidos no sentido de desenvolver novos métodos para avaliação de superfícies. Embora a grande maioria das superfícies seja especificada por parâmetros 2D tais como Ra (rugosidade média) muitas vezes eles não são suficientes para controlar e caracterizar uma superfície. Novos parâmetros foram desenvolvidos onde engenheiros e processistas de manufatura não são somente capazes de ver as superfícies com muito mais detalhes, mas também são capazes de desenvolver e testar superfícies visando a sua funcionabilidade, ou seja, serem produzidas, controladas e testadas de acordo com a função que irão desempenhar na aplicação. O presente trabalho analisa os parâmetros atuais largamente utilizados pela indústria mostrando as suas vantagens e suas limitações. Testes experimentais foram realizados utilizando estes parâmetros na caracterização de superfícies de mancais após a sua fabricação bem como o seu desempenho em teste de vida acelerado. Foram utilizados um perfilômetro mecânico e um perfilômetro óptico para a medição dos parâmetros de superfície. É mostrado que os parâmetros de rugosidade Ra, Rsk, Rk, Sbi, Sci e Svi podem ser usados para caracterizar um processo de fabricação de uma superfície bem como a sua evolução topográfica num teste de vida acelerado. / The topographic characterization of engineering surfaces is very important in applications involving friction, wear and lubrication. This practice started in the 1930s and until now great efforts have been put to developing new methods for engineering surfaces. Although most of the surfaces are specified using 2D (two dimensions) parameters as Ra (average roughness), sometimes they are not enough to control and characterize the surface. A new group of parameters were developed which engineering and process designers are not only able to view their surfaces in much greater details, but they are also able to design and test surfaces with an eye toward functionality, i. e., to be produced, controlled and tested according to its application. The present work analyzes the present parameters widely used by the industry showing their advantages and their limitations. Experimental tests were carried out utilizing these parameters in the characterization of bearing surfaces after manufacturing as well its performance in the accelerated life test. Mechanical and optical profilers were used to make the measurements. It is shown that the parameters Ra, Rsk, Rk, Sbi, Sci and Svi can be used to characterize the surface manufacturing process as well its topographic evolution in an accelerated life test.
3

Parâmetros topográficos para avaliação, caracterização e controle tribológicos de superfícies de engenharia / Topographic parameters for evaluation, characterization and control of engineering surfaces

Enio da Silva Rodrigues Freitas 24 November 2006 (has links)
A caracterização da topografia de superfícies de engenharia é muito importante em aplicações envolvendo atrito, lubrificação e desgaste. Esta prática teve inicio na década de 30 e até os dias atuais vários esforços são desprendidos no sentido de desenvolver novos métodos para avaliação de superfícies. Embora a grande maioria das superfícies seja especificada por parâmetros 2D tais como Ra (rugosidade média) muitas vezes eles não são suficientes para controlar e caracterizar uma superfície. Novos parâmetros foram desenvolvidos onde engenheiros e processistas de manufatura não são somente capazes de ver as superfícies com muito mais detalhes, mas também são capazes de desenvolver e testar superfícies visando a sua funcionabilidade, ou seja, serem produzidas, controladas e testadas de acordo com a função que irão desempenhar na aplicação. O presente trabalho analisa os parâmetros atuais largamente utilizados pela indústria mostrando as suas vantagens e suas limitações. Testes experimentais foram realizados utilizando estes parâmetros na caracterização de superfícies de mancais após a sua fabricação bem como o seu desempenho em teste de vida acelerado. Foram utilizados um perfilômetro mecânico e um perfilômetro óptico para a medição dos parâmetros de superfície. É mostrado que os parâmetros de rugosidade Ra, Rsk, Rk, Sbi, Sci e Svi podem ser usados para caracterizar um processo de fabricação de uma superfície bem como a sua evolução topográfica num teste de vida acelerado. / The topographic characterization of engineering surfaces is very important in applications involving friction, wear and lubrication. This practice started in the 1930s and until now great efforts have been put to developing new methods for engineering surfaces. Although most of the surfaces are specified using 2D (two dimensions) parameters as Ra (average roughness), sometimes they are not enough to control and characterize the surface. A new group of parameters were developed which engineering and process designers are not only able to view their surfaces in much greater details, but they are also able to design and test surfaces with an eye toward functionality, i. e., to be produced, controlled and tested according to its application. The present work analyzes the present parameters widely used by the industry showing their advantages and their limitations. Experimental tests were carried out utilizing these parameters in the characterization of bearing surfaces after manufacturing as well its performance in the accelerated life test. Mechanical and optical profilers were used to make the measurements. It is shown that the parameters Ra, Rsk, Rk, Sbi, Sci and Svi can be used to characterize the surface manufacturing process as well its topographic evolution in an accelerated life test.
4

Study Of Multiple Asperity Sliding Contacts

Muthu Krishnan, M 07 1900 (has links) (PDF)
Surfaces are rough, unless special care is taken to make them atomically smooth. Roughness exists at all scales, and any surface-producing operation affects the roughness in certain degrees, specific to the production process. When two surfaces are brought close to each other, contact is established at many isolated locations. The number and size of these contact islands depend on the applied load, material properties of the surfaces and the nature of roughness. These contact islands affect the tribological properties of the contacting surfaces. The real contact area, which is the sum total of the area of contacting islands, is much smaller than the apparent contact area dictated by the macroscopic geometry of the contacting surfaces. Since the total load is supported by these contact islands, the local contact pressure will be very high, and dependent on the local microscopic geometry of the roughness. Thus understanding the deformation behaviour of the rough surfaces will lead to better understanding of friction and wear properties of the surfaces. In this work, the interaction of these contact islands with each other is studied when two surfaces are in contact and sliding past each other. Asperities can be thought of as basic units of roughness. The geometry and the distribution of heights of asperities can be used to define the roughness. For example, one of the earliest models of roughness is that of hemispherical asperities carrying smaller hemispherical asperities on their back, which in turn carry smaller asperities, and soon. In the present study the asperities are assumed to be of uniform size, shape and distribution. Normal and tangential loading response of these asperities with a rigid indenter is studied through elastic-plastic plane strain finite element studies. As a rigid indenter is loaded onto a surface with a regular array of identical asperities, initial contact is established at a single asperity. The plastic zone is initially confined within the asperity. When the load is increased ,the elastic-plastic boundary moves towards the free surface of the asperity, and the contact pressure decreases. The geometry and spacing are determined when the neighbouring asperities come into contact. The plastic zone in these asperities is constrained, and hence contact pressure sustained by these asperities is larger. As the indentation progresses, more asperities come into contact in a similar way. If a tangential displacement is now applied to the indenter, the von Mises stress contours shift in the direction of indenter displacement. As the tangential displacement increases, the number of asperities in contact with the indenter decreases gradually before reaching a steady sliding state. The tangential sliding force experienced by the indenter arises from two components. One is the frictional resistance between the contacting surfaces and the other is due to the plastic deformation of the substrate. If the surface is completely elastic, it has been seen that the sliding force is purely due to the specified friction coefficient. For the smooth surface, as the subsurface makes the transition from purely elastic to confined plastic zone, plasticity breaks out on the free surface, hence the sliding force increases. For surfaces with asperities, even at very small load, the asperities deform plastically and hence the sliding force is considerably higher. The frictional force is experimentally measured by sliding a spherical indenter on smooth and rough surfaces. These experimental results are qualitatively compared with two dimensional finite element results. It has been observed that for rough surface, sliding force is considerablyhigherthanthesmoothsurface,asisobservedinsimu-lations at lower loads. In contrast to the simulations, the sliding force decreases at higher loads for both the smooth and rough surfaces.

Page generated in 0.0938 seconds