• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 10
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immune function and development in altricial-developing passerine house sparrows (Passer domesticus)

King, Marisa Olson. January 2010 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, May 2010. / Title from PDF title page (viewed on July 1, 2010). "School of Biological Sciences." Includes bibliographical references.
2

A comparative study of the Grey-headed Sparrow (Passer griseus L) and the House Sparrow (Passer domesticus L) in Malawi

Nhlane, Martin Edwin Darwin January 1997 (has links)
The House Sparrow Passer domesticus, an introduced species, and the Grey-headed Sparrow Passer griseus, an indigenous species, are sympatric in Malawi. Their distribution in the country and any possible interactions were studied, principally in southern Malawi. A morphological analysis of museum specimens confirmed that grey-headed sparrows in Malawi belong to the Northern Grey-headed Sparrow Passer griseus as distinct from the Southern Grey-headed Sparrow Passer diffusus. This species was widely distributed in the, country in association with human dwellings, both in rural areas as well as urban centres. In the northern region Greyheaded Sparrows were more abundant in the urban centres than rural areas, but in the central and southern regions numbers in the rural and urban areas were more or less the same. In Blantyre City, where they are in sympatry with the House Sparrow, they were found in the low density and industrial areas and were absent from the high density areas. The House Sparrow, arrived in Malawi in 1967 at Chileka in the southern region. Since then it has spread northwards, moving from the southern to the central and northern regions. House Sparrow numbers were found to be progressively larger in the southern region and lowest in the northern region. House Sparrows were found at sites where food was readily available, as in the immediate vicinity of houses. In the central and northern regions they were restricted mainly to urban areas. In the southern region, they occur both in rural and urban areas, probably as a reflection of the larger period of colonization in the south. In the northern region their movement has apparently been restricted by geographical barriers. In Blantyre City Grey-headed Sparrows preferred areas where tree density was high and house density was low, while House Sparrows preferred areas where house density was high and tree density was low. There was a positive correlation between Greyheaded Sparrow numbers and tree density and a negative correlation with house density. House Sparrow abundance was negatively correlated with tree density and positively correlated with house density. Grey-headed Sparrows bred in the rainy season, whereas House Sparrows bred throughout the year. There were differences in nest site selection: Grey-headed Sparrows used artificial structures such as fencing poles, and wooden telephone or electricity poles. The House Sparrow used mostly buildings and nested in crevices, holes in walls and between the walls and rafters. Nest height also differed- Grey-headed Sparrows nested at heights ranging from 1 - 8 m while House Sparrow nests were at heights of 1 - 5 m. Moult data suggests that although the House Sparrows breed throughout the year, they moult at a particular time of the year when breeding is less common. Grey-headed Sparrows were found to moult mainly from May to September in southern Africa and from June to September in central Africa. In both cases the breeding season extends over a similar period from about October to April/May of the following year. Peak moult periods differed between the House Sparrows and Grey-headed Sparrows. House Sparrows moulted mainly in the first half of the year, and Greyheaded Sparrows in the second six months. The clutch sizes of the two species were similar (mean 3.9 eggs for the House Sparrow and 3.4 for the Grey-headed Sparrow). The clutch size of the House Sparrow varied seasonally and was larger from November to May. The average incubation period for the House Sparrow was 11.5 days and the fledging period 15.4 days. The Grey-headed Sparrow fledging period was 14.7 days. Chick mortality of the House Sparrow at Chikunda farm was attributed to starvation resulting from brood reduction, abandonment, predation, low birth weight, accidental deaths and parasitism by fly larvae. Both Grey-headed and House Sparrows fed their young on insect food. Male House Sparrows fed actively initially, but their contribution declined from about day five onwards. In the Grey-headed Sparrow, both parents fed their young equally throughout the nestling period. House Sparrows fed on the ground near houses; Grey-headed Sparrows fed both on the ground away from houses and in tree canopies. The Grey-headed Sparrow walked as it fed on the ground as opposed to the House sparrow which hopped. Grey-headed Sparrows fed mainly as pairs and singletons while House Sparrows fed as family groups. Larger feeding groups of Grey-headed Sparrows were seen in the northern region at areas where food was plentiful. Where the two sparrows were seen feeding together, there was no direct competition for food. Where individual distance was violated; male House Sparrows displaced Grey-headed Sparrows which landed too close to them. Overall it appears that the distribution of the two species is determined more by their responses to habitat conditions than by interspecific interactions.
3

Epidermal lipids and their relationship to cutaneous water loss in house sparrows (Passer domesticus) from desert and mesic environments

Munoz-Garcia, Agustin, January 2008 (has links)
Thesis (Ph. D.)--Ohio State University, 2008. / Title from first page of PDF file. Includes bibliographical references (p. 199-211).
4

The seasonality of parasites in Illinois house sparrows (Passer domesticus) : effect of stress on infection parameters /

Gibson, Tiffany C. M., January 2010 (has links) (PDF)
Thesis (M.S.)--Eastern Illinois University, 2010. / Includes bibliographical references (leaves 55-64).
5

Some factors effecting spermatokinesis in the testes of the quail (Colinus virginianus) and the house sparrow (Passer domesticus) /

Frantz, William Lawrence January 1957 (has links)
No description available.
6

The evolution of the house sparrow (Passer domesticus) in southern Africa.

Msimanga, Audrey Ottilia. January 2001 (has links)
The house sparrow, Passer domesticus, is one of the most successful invading bird species in the world. It was introduced to southern Africa around 1900 and has since spread through the region. Its dispersal was characterised by an initial slow phase followed by a rapid increase in the rate of spread. Following 50 years of slow spread, the rate of dispersal accelerated to over 80 km/year. The initial slow rate can be attributed to an Allee effect, defined as "a disproportionate reduction in reproduction below a threshold population density due to reduced probability of finding a mate". The rapid phase involved a combination of long-range jumps (leap-frogging dispersal) and diffusive movement over short distances. Dispersal was significantly faster along railway lines. Introduction of the house sparrow, Passer domesticus, to southern Africa involved unknown numbers of both the domesticus race of Europe and indicus of Asia, resulting in the establishment of a genetically diverse founder population along coastal South Africa. The birds have undergone significant differentiation since introduction about 100 years ago. Significant sexual size dimorphism was detected among southern African house sparrows, especially in flight structures. Males were larger than females in all characters except tarsus and claw length. Overall body size variation was clinaly ordered with a general increase in size with latitude in conformity with Bergmann's rule. Tarsus length also increased southwards, with the longest tarsi in birds of coastal sites in South Africa and the shortest in Zimbabwe. Patterns of variation in morphological characters paralleled climatic trends, especially minimum temperature and humidity. Beak size and shape of Zimbabwean birds appeared to be under the greatest influence of climatic factors. Shorter and more conicaly shaped beaks were selected for in females in Zimbabwe. Natural selection was modifying the morphological characters resulting in adaptive radiation in morphology of southern African populations. Few studies of microevolution (change in morphology over a short period) have been conducted in birds and none in invading bird species in the tropics. A founding population comprising both the Asian and the European races of the house sparrow, P. d. domesticus and P. d. indicus first arrived in Zimbabwe 30 years ago. Because of its recent introduction to Zimbabwe and because of its known potential for rapid adaptation and differentiation elsewhere in its new range, the house sparrow provided the ideal case study in microevolution in tropical Africa. Morphological differentiation in Zimbabwean populations of the house sparrow was analysed to determine temporal variation in local samples and the extent of variation from parent populations of Asia and Europe. Samples collected since arrival in Zimbabwe up to 1980 were compared with those collected from current populations in 1998/1999 to determine local changes over time. The Zimbabwean samples were then contrasted with samples from Asian and European populations to determine the extent of differentiation in the introduced birds of Zimbabwe. Zimbabwean populations had differentiated from their Asian parents in six of the seven morphological characters examined. The greatest differentiation was in beak size and shape for both males and females. Males developed larger beaks and shorter wings than the Asian birds and female beaks became more conical. A large proportion of the potential phenetic diversity of the founding population of both domesticus and indicus genes had been realised in Zimbabwe. / Thesis (M.Sc.)-University of Natal, Durban, 2001.
7

Fenthion as a secondary poisoning hazard to American kestrels

Hunt, Katherine A. (Katherine Anna) January 1990 (has links)
The potential of fenthion to act as a secondary poisoning hazard to birds of prey was investigated using American kestrels (Falco sparverius) and house sparrows (Passer domesticus) as a representative model of a naturally occurring predator-prey interaction. Kestrels were presented with live sparrows previously exposed to perches containing Rid-A-Bird 1100$ sp circler$ solution (Rid-A-Bird, Inc., Muscatine, IA), 11% fenthion active ingredient, under simulated field conditions. All 14 kestrels tested died following ingestion of fenthion-exposed sparrows. Decreased brain cholinesterase activity and residue analyses of kestrel gastro-intestinal samples confirmed secondary fenthion poisoning. / Prey selection trials were conducted in the laboratory to determine the response of kestrels to a mixed flock of contaminated and uncontaminated sparrows. Kestrels captured fenthion-exposed prey significantly more often (12 out of 15 trials) than normal, unexposed prey. / These results suggest that avian predators and scavengers in the wild are at risk from contact with fenthion-exposed prey in areas where Rid-A-Bird perches are in use.
8

Fenthion as a secondary poisoning hazard to American kestrels

Hunt, Katherine A. (Katherine Anna) January 1990 (has links)
No description available.
9

The arthropod nest fauna of house sparrows and tree swallows in southern Quebec /

Riley, Cyrena. January 2000 (has links)
The diversity and abundance of the arthropod nest fauna of House Sparrows (Passer domesticus (L.)) and Tree Swallows (Tachycineta bicolor (Vieillot)) in southern Quebec were studied. Over 90,000 arthropods were extracted from the nests, including at least 71 species (50 families) of insects and at least 11 species (8 families) of mites. There were no significant differences in the species richness or diversity of nest arthropods from year to year (1997--1998), or from nest to nest within either host species. There was no significant difference in the overall species richness or diversity between House Sparrows and Tree Swallows. Cluster analyses of species richness and three diversity indices for all nests showed no clustering according to bird species. However, there were some significant differences in the abundance and diversity of particular arthropod taxa between the two bird species, with different ectoparasitic and non-ectoparasitic species dominant in the nests of each host species.
10

The arthropod nest fauna of house sparrows and tree swallows in southern Quebec /

Riley, Cyrena. January 2000 (has links)
No description available.

Page generated in 0.0593 seconds