• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of geothermal application for electricity production from the prairie evaporite formation of Williston Basin in South-West Manitoba

Firoozy, Niloofar 10 1900 (has links)
In this thesis, the potential of enhanced geothermal system to provide adequate energy to a 10 MW electricity power plant from Prairie Evaporite Formation of Williston Basin was investigated. This formation partly consists of halite with low thermal resistance and high thermal conductivity, which translates into a lower drilling length to reach the desired temperature, comparing to other rock types. To this end, two numerical models with experimental data in south-west Manitoba (i.e. Tilston) and south-east Saskatchewan (i.e. Generic) were designed. The thermal reservoirs were located at 1.5 km (Tilston site) and 3 km (Generic site) with approximate thicknesses of 118 m. Considering an injection brine of 6% NaCl at 15°C, the final derived temperature at wellhead of the production wells were 43°C and 105°C respectively. Finally, the Generic site was concluded as a suitable candidate for electricity production by providing higher surfaced fluid temperature than the minimum of 80°C. / February 2017
2

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method

Lee, Byungtark 2011 August 1900 (has links)
In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under this circumstance relies on generation and stimulation of a fracture network. This thesis presents numerical simulation of the response of a fractured rock to injection and extraction considering the role of poro-thermoelasticity and joint deformation. Fluid flow and heat transport in the fracture are treated using a finite difference method while the fracture and rock matrix deformation are determined using the displacement discontinuity method (DDM). The fractures response to fluid injection and extraction is affected both by the induced stresses as well as by the initial far-field stress. The latter is accounted for using the non-equilibrium condition, i.e., relaxing the assumption that the rock joints are in equilibrium with the in-situ stress state. The fully coupled DDM simulation has been used to carry out several case studies to model the fracture response under different injection/extractions, in-situ stresses, joint geometries and properties, for both equilibrium and non-equilibrium conditions. The following observations are made: i) Fluid injection increases the pressure causing the joint to open. For non-isothermal injection, cooling increases the fracture aperture drastically by inducing tensile stresses. Higher fracture aperture means higher conductivity. ii) In a single fracture under constant anisotropic in-situ stress (non-equilibrium condition), permanent shear slip is encountered on all fracture segments when the shear strength is overcome by shear stress in response to fluid injection. With cooling operation, the fracture segments in the vicinity of the injection point are opened due to cooling-induced tensile stress and injection pressure, and all the fracture segments experience slip. iii) Fluid pressure in fractures increases in response to compression. The fluid compressibility and joint stiffness play a role. iv) When there are injection and extraction in fractured reservoirs, the cooler fluid flows through the fracture channels from the injection point to extraction well extracting heat from the warmer reservoir matrix. As the matrix cools, the resulting thermal stress increases the fracture apertures and thus increases the fracture conductivity. v) Injection decreases the amount of effective stress due to pressure increase in fracture and matrix near a well. In contrast, extraction increases the amount of effective stress due to pressure drop in fracture and matrix.

Page generated in 0.079 seconds