• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of the enzymatic conversion of maize stover to bioethanol / by Nombongo Mabentsela

Mabentsela, Nombongo January 2010 (has links)
The severe effects associated with global warming and the rapid increase in oil prices are the driving forces behind the demand for clean carbon–neutral and biofuels such as bioethanol. Research studies are now focusing on using lignocellulosic biomass for bioethanol production due to concerns about food security and inflation. The chosen feedstock for this study was maize stover, given that it is the most abundant agricultural residue in South Africa. Maize stover consists of structural carbohydrates that can be enzymatically converted into fermentable sugars. The major drawback in the production of bioethanol from lignocellulosic biomass has been its high equipment and operational costs due to the use of acids and high enzyme loadings. The aim of this study was to investigate the possibility of optimizing the enzyme hydrolysis of pre–treated maize stover without further increasing the amount of enzymes. The maximum glucose yield attained was 690 ± 35 mg of glucose per gram of substrate which is equivalent to a conversion efficiency of 119%. The preferred pre–treatment method used was 3% sulphuric acid for 60 minutes at 121oC and the enzymatic hydrolysis process was performed at a 5% substrate loading, 50oC and pH 5.0 using 30 FPU per gram of cellulose in the presence of 1.25 g.L–1 of Tween 80 for 48 hours. The addition of Tween 80 increased the glucose yields by 23 % and thus, it has the potential of lowering the overall process costs by increasing the glucose yield without further addition of enzymes. Keywords: Bioethanol, maize stover, lignocellulosic biomass, pre–treatment, enzymatic hydrolysis / Thesis (M.Sc. Engineering Sciences (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.
2

Optimization of the enzymatic conversion of maize stover to bioethanol / by Nombongo Mabentsela

Mabentsela, Nombongo January 2010 (has links)
The severe effects associated with global warming and the rapid increase in oil prices are the driving forces behind the demand for clean carbon–neutral and biofuels such as bioethanol. Research studies are now focusing on using lignocellulosic biomass for bioethanol production due to concerns about food security and inflation. The chosen feedstock for this study was maize stover, given that it is the most abundant agricultural residue in South Africa. Maize stover consists of structural carbohydrates that can be enzymatically converted into fermentable sugars. The major drawback in the production of bioethanol from lignocellulosic biomass has been its high equipment and operational costs due to the use of acids and high enzyme loadings. The aim of this study was to investigate the possibility of optimizing the enzyme hydrolysis of pre–treated maize stover without further increasing the amount of enzymes. The maximum glucose yield attained was 690 ± 35 mg of glucose per gram of substrate which is equivalent to a conversion efficiency of 119%. The preferred pre–treatment method used was 3% sulphuric acid for 60 minutes at 121oC and the enzymatic hydrolysis process was performed at a 5% substrate loading, 50oC and pH 5.0 using 30 FPU per gram of cellulose in the presence of 1.25 g.L–1 of Tween 80 for 48 hours. The addition of Tween 80 increased the glucose yields by 23 % and thus, it has the potential of lowering the overall process costs by increasing the glucose yield without further addition of enzymes. Keywords: Bioethanol, maize stover, lignocellulosic biomass, pre–treatment, enzymatic hydrolysis / Thesis (M.Sc. Engineering Sciences (Chemical Engineering))--North-West University, Potchefstroom Campus, 2011.

Page generated in 0.0368 seconds