• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporating Vehicle Emission Models into the Highway Design Process

Ko, Myung-Hoon 2011 December 1900 (has links)
Automobile transportation consumes a significant amount of non-reusable energy and emits emissions as by-products of fuel consumption. There has been much progress in the development of vehicle engine technology and alternative fuels to reduce the adverse impact of highway transportation on the environment. However, the research regarding the reduction of the adverse impact through highway design is still in its infancy. Furthermore, highway design manuals/guidebooks do not provide any information on environmentally-friendly designs. The primary objective of this research was to provide the tools and guidelines for a quantitative environmental evaluation in highway design. This research provided the results regarding the quantitative environmental impacts, by means of fuel consumption and emissions, of various highway geometric design conditions on the vertical grades as well as for horizontal and vertical crest curves that could be included in the highway design process. The researcher generated second-by-second speed profiles using the speed prediction models and non-uniform acceleration/deceleration models, and extracted the fuel consumption and emissions rates based on vehicle specific powers and speeds using recently developed motor vehicle emission simulator (MOVES). The generated speed profiles were matched with the extracted rates and aggregated during a trip on the grades and curves. In addition, the researcher conducted the environmental evaluation including a benefit-cost analysis with actual highway geometric data based on the proposed method and processes. The results demonstrated that fuel consumption and emissions could be significantly changed according to highway design conditions on grades and curves. Throughout the analyses, this research provides the guidelines and tools for environmental evaluations related to selected design features as a part of the highway development process. The provided guidelines and tools can reduce the uncertainty associated with the engineering judgment for environmentally-conscious highway design. Finally, this research shows the efficacy of environmentally-friendly design for sustainable (i.e., social, economical, and environmental) transportation.

Page generated in 0.1195 seconds