• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 108
  • 23
  • 17
  • 14
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 371
  • 371
  • 371
  • 108
  • 102
  • 94
  • 73
  • 68
  • 43
  • 37
  • 36
  • 32
  • 32
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The Study of Citizen Participation and the Hi-Tech Petrochemical Zone Transformed from China Petroleum Corporation

Tsai, Chin-I 28 August 2006 (has links)
In recent years, ¡§Boost the economy and cut down the unemployment rate¡¨ has become a common understanding of the people in Taiwan, which is the government¡¦s goal for economic development as well. One of the most effective strategies to boost the economy is to encourage investment. However, the rising concern of environmental protection and the consciousness of living peacefully with the mother natural have become a trend nowadays. Furthermore, not only business but also the government and the neighboring residents have increased their standards for environmental protection. Therefore, the industry has tended to be more prudent to any new development project. What deserves to be mentioned is, no matter how wonderful a proposed project is, without the support of local residents, no project can be executed. Therefore, we should regard the citizen participation and environmental impact assessment (EIA). China Petroleum Corporation (CPC) proposed at the end of 2002, aiming to make the transformation from an oil plant to a hi-tech petrochemical zone on Kaohsiung Oil Refinery, with new petrochemical equipment and nono-technology. Ministry of Economic Affairs has agreed with the proposed transformation with the condition that CPC has to obtain approval from the local residents, representatives and government. According to the analysis of power interaction, this study intends to provide related policy suggestions to the government and CPC with the purpose of economic prosperity. For the evolution of modern society, sustainable development and business continuity will play important roles. Besides adopting opinion poll, Delphi Technique is also applied as the research methodology to carry on experts¡¦ interviews and questionnaires investigation.
172

Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada, Appendix G

American Indian Writers Subgroup 26 June 1996 (has links)
On August 10, 1994, the Department of Energy/Nevada Operations Office (DOE/NV) published a Notice of Intent to prepare an Environmental Impact Statement (EIS) for the entire Nevada Test Site (NTS) and seven off -site locations in the State of Nevada. In the EIS, DOE was to consider the following site management alternatives: (A) continue current operations and interagency project activities and programs. (B) discontinue operations, except those related to monitoring, security, and human health and safety, and decommission, (C) expand the use of the NTS to support national defense and nondefense programs, including waste management and storage, transportation, environmental restoration, and research and development; or (D) implement alternate use of withdrawn lands for new programs including unprecedented public access to remote areas for education and recreation. The structure, organization, and content of the EIS document were to be developed in accordance with the law, and included an assessment of long -term consequences of pro-posed alternatives, evaluation of mitigation strategies, and development of a resource management plan. Thus, in 1995 DOE/NV released a Draft Implementation Plan that documented the agency's approach for preparing the EIS, an important aspect of which is the incorporation of public opinion. In the same year, DOE/NV began consultations with the CGTO as required by NEPA, by the President's Council on Environmental Quality (Federal Register 43: 230, 44978 -56007), and the American Indian and Alaska Native Tribal Government Policy, as amended in 2000. The CGTO appointed seven of its representatives (the American Indian Writers Subgroup or AIWS) to research the potential adverse effects of each action alternative on American Indian resources, to propose mitigation alternatives, and to outline future involvement of the member tribes and organizations in NTS programs and activities. The result of this endeavor was unprecedented, in that DOE agreed to include excerpts of text prepared by the AIWS in the main body of the EIS document and to publish the American Indian Assessment: Final Environmental Impact Statement for the Nevada Test Site and Off-site Locations in the State of Nevada: A Native American Resource Document in its entirety, as Appendix G of the Final NTS EIS (DOE /NV 1996).
173

Environmental Impact Assessments in Detailed Development Plan Processes: An Adequacy Analysis

Persson, Alexandra January 2014 (has links)
A detailed development plan (DDP) is a legally binding plan that regulates the municipalities land use on a detailed level. The purpose with the DDP is to evaluate the suitability for development on land access, in order for municipalities to manage spatial planning and minimize environmental harm. If a DDP would likely cause a significant impact on the environment, an Environmental Impact Assessment (EIA) has to be produced. The aim of this thesis was to investigate how DDP and EIA processes are working on a local level in Sweden, and how the quality is reflected in the processes. More specifically, I investigated the role of EIA actors involved in the DDP process, as well as whether these processes are inadequate from an environmental conservation perspective. To investigate these issues, a document study was conducted as well as an interview study. The results from the study presents several shortcomings in both processes; examples of shortcomings were the lacking knowledge among the DDP and EIA actors in how to conduct the process, as well as interpreting and understanding the law.  Other observed shortcomings were the different levels of engagement among the plan administrators, the EIA performers and the County Administrative Board reviewers. Three important factors were recognized for achieving good processes. Firstly, the people involved need to have broad knowledge and good qualifications. Secondly, the actors must be able to communicate in a good and clear manner. Lastly, the third factor is a good process leader who brings together the DDP and EIA process.
174

An Analysis of the Substantive Effectiveness of the National Environmental Policy Act: Lessons from Ivanpah

Oehler, Stephanie C 01 January 2014 (has links)
Nearly 45 years ago, the National Environmental Policy Act (NEPA) was signed into law to become the first national policy for the environment of the United States. As it has evolved over time through implementation and litigation, numerous countries and states around the world have emulated NEPA with similar environmental impact assessment requirements. Many scholars have evaluated the success of the legislation in accomplishing its lofty goals. Most commonly, however, these studies address the procedural performance of agencies through the creation of environmental impact statements. This thesis examines the effectiveness of NEPA in accomplishing its substantive, rather than procedural, goals by identifying a set of values essential to meeting the fundamental intent of the Act. The values are then evaluated in the context of the Ivanpah Solar Electric Generating System Project to determine whether or not the NEPA process was effective in this case and to derive lessons for its future implementation.
175

Conservation issues for Hochstetter's frog (Leiopelma hochstetteri): monitoring techniques and chytridiomycosis prevalence in the Auckland region, New Zealand : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Conservation Biology at Massey University, Auckland, New Zealand

Puig, Virginia Moreno January 2009 (has links)
Amphibians are suffering extinctions and range contractions globally. This is caused by numerous factors and most of them are related to human activities. The overall aim of this thesis was to make a significant contribution to the conservation of the endemic amphibian Leiopelma hochstetteri through research. This was achieved by focusing in two of the main conservation issues for this species, the need for standardised and robust monitoring techniques to detect trends and changes in populations, and the determination of the prevalence of chytridiomycosis, caused by the amphibian chytrid fungus (Batrachochytrium dendrobatidis). Two populations of the Auckland Region were selected for this study, one on the mainland (Waitakere Ranges) and the only known offshore island population of this species (Great Barrier Island). For both study sites different monitoring methods were used to obtain some population parameters. Site occupancy models of MacKenzie et al. (2002) gave reliable site-specific estimations of occupancy and detection probability using covariate information and presence-absence data collected from 50 sites in the Waitakere Ranges and four repeated visits during 2008. Elevation and distance searched were found to have an important effect on occupancy levels, while time taken to search the site was important variable determining detection probabilities. Also, parameters were estimated for three age classes separately. Statistical models were used to infer abundance from occupancy analysis, and results were compared with the distribution of relative abundances obtained from repeated transect counts and an established sight/re-sight criterion. In addition, the use of surrogate measures for relative abundance was explored. Detection probability and the distance to first frog found were found to have a significant correlation with relative abundance. These measures can be used to infer relative abundance in future site occupancy surveys. Two surveys and a pilot site occupancy survey were conducted on Great Barrier Island, and presence of frogs was confirmed atthe northern block, and in a small seepage in the central block. No new locations were found. Waitakere Ranges and Great Barrier Is. populations were tested for the presence of chytridiomycosis, and all frogs sampled tested negative (n = 124) which means that if present chytridiomycosis prevalence is lower than 5% with a 95% confidence interval. This and previous evidence suggests that L. hochstetteri may be resistant or immune to the disease. However, to confirm this additional studies are needed.
176

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
177

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
178

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
179

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).
180

Limitations to plant root growth in highly saline and alkaline bauxite residue

Kopittke, Peter Martin Unknown Date (has links)
Revegetation of bauxite residue is hampered by a lack of understanding of the limitations imposed on plant growth in highly saline and alkaline growth mediums. In this study, several of these growth limiting factors were investigated. The toxicity of the hydroxyl ion (OH-) was examined using a solution culture system developed to allow studies at high pH without nutritional limitations. Also using this solution culture system, the effect of the high Na and Mg concentrations of bauxite residue on the Ca nutrition of plants was investigated. As the toxicity of Al at high pH is not known, a study was conducted to examine the rhizotoxicity of aluminate (Al(OH)4-) and polycationic Al at high pH. The ability of plant roots to reduce rhizosphere pH in bauxite residue was also considered. A novel gypsum application method was assessed for its efficiency at improving the Ca status of bauxite residue. Manual adjustment, ion exchange resins and automated titration were examined for their suitability for nutrient solution pH control in alkaline conditions. For short-term studies, it was found that a solution without supply of Cu, Fe, Mn and Zn, and aerated with CO2 depleted air, greatly reduced nutrient precipitation at high pH, thus eliminating nutritional differences between treatments. Manual pH adjustment and the use of ion exchange resins as pH buffers were unsuitable methods of pH control. In contrast, pH control by automated titration had little effect on solution composition while maintaining constant pH. The solution culture system was used to examine OH- toxicity in mungbeans (Vigna radiata (L.) Wilczek cv. Emerald), with root length reduced at a bulk solution pH of 8.5 and greater. The effect of Ca activity ratio (CAR) and pH on Ca uptake by mungbeans and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown to have no effect on the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. However, using dilute nutrient solutions dominated by Mg at pH 9.0, root growth was found to be more limited than had been observed for Na solutions, with growth reduced beneath a critical CAR of 0.050. Using a CAR equation modified with plasma membrane binding constants (to incorporate the differing antagonistic effects of Mg and Na), new critical CAR values were calculated for Na (0.56) and Mg (0.44) dominated solutions. This modified CAR equation permits the calculation of CAR irrespective of the dominant salt present. Solubilities of various gypsum sources and size fractions in seawater were studied to investigate the effectiveness of gypsum addition to the residue sand pipeline, rather than as a direct field application. The dissolution rate constant varied with gypsum source (analytical grade (AR) > phosphogypsum (PG) > mined gypsum (MG)) due to reactivity and surface area differences, generally reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to remove Ca from solution (due to cation exchange and precipitation) was also examined; the quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption, comparatively rapid dissolution rates, and long pumping times (20 min), preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Dilute, alkaline (pH 9.5) nutrient solutions were used to investigate the effects of aluminate (Al(OH)4-) on mungbean root growth. Although root growth in Al(OH)4- solutions was slightly limited, the symptoms associated with this growth reduction were observed to be similar to those caused by the Al13 polycation at concentrations lower than that which can be detected. Also, when roots displaying these symptoms were transferred to fresh Al(OH)4- solutions, no root tip lesions were observed, and root hair growth on the lateral roots improved. Thus, Al(OH)4- is considered to be non-toxic, with the observed reduction in root growth in solutions containing Al(OH)4- due to the gradual formation of toxic Al13 in the bulk nutrient solution resulting from the acidification of the alkaline nutrient solution by the plant roots. The effect of Mn deficiency in Rhodes grass and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. In response to Mn deficiency in residue sand, Rhodes grass was observed to increase acidification of its rhizosphere (being up to 1.22 pH units lower than the bulk soil). Due to its ability to fix atmospheric N2 rather than relying on soil N (NO3-) reserves, inoculated lucerne (1.75 pH unit decrease) was also found to acidify its rhizosphere to a greater extent than non-inoculated lucerne (1.16 pH unit decrease).

Page generated in 0.1212 seconds