Spelling suggestions: "subject:"0nvironmental physiology"" "subject:"byenvironmental physiology""
1 |
THE EFFECTS OF COLD AND LOWER BODY NEGATVIE PRESSURE ON CARDIOVASCULAR AND THERMOREGULATORY HOMEOSTASISKean, David Jeffrey 24 April 2012 (has links)
No description available.
|
2 |
Individual Variation in Heat SubstitutionMaloney, Caroline 26 January 2022 (has links)
Endotherms living in cold environments must pay the energetic cost of maintaining a high core body temperature. This cost can be potentially alleviated by an important yet often overlooked mechanism: “activity-thermoregulatory heat substitution” (i.e., the use of the heat generated by active skeletal muscles to replace heat that would have been generated by thermogenesis). While substitution has been documented numerous times, the extent of individual variation in substitution has never been quantified. I used a respirometry cage system to repeatedly measure substitution through the concomitant monitoring of metabolic rate (MR) and locomotor activity
in 46 female white-footed mice (Peromyscus leucopus) in neutral and cold ambient temperatures. I took a total of 117 measures of substitution by quantifying the difference in the slope of the relationship between MR and locomotor activity speed at two different ambient temperatures. Consistency repeatability (±se) of substitution was 0.313±0.131 – hence, about a third of the variation in substitution occurs at the among-individual level. Including key morphological traits such as trunk surface area, tail mass, heart mass, and body length accounted for the majority of the among-individual variation, suggesting that I have successfully identified traits underlying
individual differences in substitution. Overall, my results show that substitution is repeatable and hence might potentially be subject to selection. Future studies should test if substitution conveys fitness advantages directly (by providing energetically cheaper activity which in turn can be utilized for reproduction), or indirectly (i.e., driven by individual differences in morphology). Future studies should also test if there is a trade-off between substitution and dry heat transfer (a thermoregulatory mechanism essential for preventing hyperthermia).
|
3 |
The Effects of Temperature and Humidity on the Inflammatory Response during Aerobic ExerciseBoka, Kylene 10 December 2018 (has links)
No description available.
|
4 |
Bridging environmental physiology and community ecology : temperature effects at the community levelIles, Alison C. 20 November 2014 (has links)
Most climate change predictions focus on the response of individual species to changing local conditions and ignore species interactions, largely due to the lack of a sound theoretical foundation for how interactions are expected to change with climate and how to incorporate them into climate change models. Much of the variability in species interaction strengths may be governed by fundamental constraints on physiological rates, possibly providing a framework for including species interactions into climate change models. Metabolic rates, ingestion rates and many other physiological rates are relatively predictable from body size and body temperature due to constraints imposed by the physical and chemical laws that govern fluid dynamics and the kinetics of biochemical reaction times. My dissertation assesses the usefulness of this framework by exploring the community-level consequences of physiological constraints.
In Chapter 2, I incorporated temperature and body size scaling into the biological rate parameters of a series of realistically structured trophic network models. The relative magnitude of the temperature scaling parameters affecting consumer energetic costs (metabolic rates) and energetic gains (ingestion rates) determined how consumer energetic efficiency changed with temperature. I systematically changed consumer energetic efficiency and examined the sensitivity of network stability and species persistence to various temperatures. I found that a species' probability of extinction depended primarily on the effects of organismal physiology (body size and energetic efficiency with respect to temperature) and secondarily on the effects of local food web structure (trophic level and consumer generality). This suggests that physiology is highly influential on the structure and dynamics of ecological communities.
If consumer energetic efficiency declined as temperature increased, that is, species did best at lower temperatures, then the simulated networks had greater stability at lower temperatures. The opposite scenario resulted in greater stability at higher temperatures. Thus, much of the community-level response depends on what species energetic efficiencies at the organismal-level really are, which formed the research question for Chapter 3: How does consumer energetic efficiency change with temperature? Existing evidence is scarce but suggestive of decreasing consumer energetic efficiency with increasing temperature. I tested this hypothesis on seven rocky intertidal invertebrate species by measuring the relative temperature scaling of their metabolic and ingestion rates as well as consumer interaction strength under lab conditions. Energetic efficiencies of these rocky intertidal invertebrates declined and species interaction strengths tended to increase with temperature. Thus, in the rocky intertidal, the mechanistic effect of temperature would be to lower community stability at higher temperatures.
Chapter 4 tests if the mechanistic effects of temperature on ingestion rates and species interaction strengths seen in the lab are apparent under field conditions. Bruce Menge and I related bio-mimetic estimates of body temperatures to estimates of per capita mussel ingestion rates and species interaction strengths by the ochre sea star Pisaster ochraceus, a keystone predator of the rocky intertidal. We found a strong, positive effect of body temperature on both per capita ingestion rates and interaction strengths. However, the effects of season and the unique way in which P. ochraceus regulates body temperatures were also apparent, leaving room for adaptation and acclimation to partially compensate for the mechanistic constraint of body temperature.
Community structure of the rocky intertidal is associated with environmental forcing due to upwelling, which delivers cold, nutrient rich water to the nearshore environment. As upwelling is driven by large-scale atmospheric pressure gradients, climate change has the potential to affect a wide range of significant ecological processes through changes in water temperature. In Chapter 5, my coauthors and I identified long-term trends in the phenology of upwelling events that are consistent with climate change predictions: upwelling events are becoming stronger and longer. As expected, longer upwelling events were related to lower average water temperatures in the rocky intertidal. Furthermore, recruitment rates of barnacles and mussels were associated with the phenology of upwelling events. Thus climate change is altering the mode and the tempo of environmental forcing in nearshore ecosystems, with ramifications for community structure and function.
Ongoing, long-term changes in environmental forcing in rocky intertidal ecosystems provide an opportunity to understand how temperature shapes community structure and the ramifications of climate change. My dissertation research demonstrates that the effect of temperature on organismal performance is an important force structuring ecological communities and has potential as a tractable framework for predicting the community level effects of climate change. / Graduation date: 2013 / Access restricted to the OSU Community, at author's request, from Nov. 20, 2012 - Nov. 20, 2014
|
Page generated in 0.0952 seconds