• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Routine procedure for the assessment of rail-induced vibration

D'Avillez, Jorge January 2013 (has links)
Railway induced ground-borne vibration is among the most common and widespread sources of perceptible environmental vibration, adversely impacting on human activity and the operation of sensitive equipment. The rising demand for building new railway lines or upgrading existing lines in order to meet increasing traffic flows has furthered the need for adequate vibration assessment tools during scheme planning and design. In recent years many studies of rail and ground dynamics have produced many vibration prediction techniques which have given rise to a variety of procedures for estimating rail-induced vibration on adjacent buildings. Each method shows potential for application at different levels of complexity and at different stages of a scheme. However, for the majority of the procedures significant challenges arise in obtaining the required input data, which can compromise their routine use in Environmental Impact Assessment (EIA). Moreover, as the majority of prediction procedures do not provide levels of uncertainty (i.e. expected spread of data), little is available on their effectiveness. Additionally, some procedures are restricted in that they require specific modelling approaches or proprietary software. Therefore, from an industrial point of view there is a need for a robust and flexible rail-induced vibration EIA procedure that can be routinely used with a degree of confidence. Based on an existing framework for assessing rail-induced vibration offered by the USA department of transportation (FTA) this project investigates, revises and establishes an empirical procedure capable of predicting rail-induced vibration in nearby buildings that can be routinely applied by the sponsoring company. Special attention is given to the degree of variability inherent to rail-induced vibration prediction, bringing forward the degrees of uncertainty, at all levels (i.e. measuring, analysis and scenario characterisation) that may impact on the procedure performance. The research shows a diminishing confidence when predicting rail-induced absolute vibration levels. It was found that ground-to-transducer coupling method, which is a critical step for acquiring data for characterising the ground, can impact on the results by as much as 10 dB. The ground decay rate, when derived through transfer functions, also showed to vary significantly in accordance to the assessment approach. Here it is shown the extent to which track conditions, which are difficult to account for, can affect predictions; variability in vibration levels of up to 10 dB, at some frequency bands, was found to occur simply due to track issues. The thesis offers general curves that represent modern UK buildings; however, a 15 dB variation should be expected. For urban areas, where the ground structure is significantly heterogeneous, the thesis proposes an empirical modelling technique capable of shortening the FTA procedure, whilst maintain the uncertainty levels within limits. Based on the finding and acknowledging the inherent degree of variability mentioned above, this study proposes a resilient empirical vibration analysis model, where its flexibility is established by balancing the significance of each modelling component with the uncertainty levels likely to arise due to randomness in the system.
2

Prediction and experimental validation of dynamic soil-structure interaction of an end-bearing pile foundation in soft clay

Theland, Freddie January 2021 (has links)
In the built environment, human activities such as railway and road traffic, constructionworks or industrial manufacturing can give rise to ground borne vibrations. Such vibrations become a concern in urban areas as they can cause human discomfort or disruption of vibration sensitive equipment in buildings. In Sweden, geological formations of soft clay soils overlying till and a high quality bedrock are encountered in densely populated areas, which are soil conditions that are prone to high levels of ground borne vibrations. Under such soil conditions, end-bearing piles are often used in the design of building foundations. The dynamic response of a building is governed by the interaction between the soil and the foundation. It is therefore essential that models used for vibration predictions are able to capture the dynamic soil-structure interaction of pile foundations. The purpose of this thesis is to experimentally and numerically investigate dynamic soil-structure interaction of an end-bearing pile group in clay by constructing a test foundation of realistic dimensions. The small-strain properties in a shallow clay deposit are estimated using different site investigation and laboratory methods. The results are synthesised into a representative soil model to compute the free-field surface response, which is validated with vibration measurements performed at the site. It is found that detailed information regarding material damping in the clay and the topmost soil layer both have a profound influence on the predicted surface response, especially with an increasing distance from the source. Dynamic impedances of four end-bearing concrete piles driven at the site are measured. Pile-soil-pile interaction is investigated by measuring the response of the neighbour piles when one of the piles in the group is excited. The square pile group is subsequently joined in a concrete cap and measurements of the impedances of the pilegroup and acceleration measurements within the piles at depth are performed. A numerical model based on the identified soil properties is implemented and validated by the measurements. A good agreement between the predicted and measured responses and impedances of the pile group foundation is found, establishing confidence in the ability to predict the dynamic characteristics of end-bearing pile foundations under the studied soil conditions. / Mänsklig verksamhet i urbana miljöer så som väg- och järnvägstrafik, byggnation eller maskindrift inom industri kan ge upphov till vibrationer som sprider sig via marken i närområdet. Dessa vibrationer kan ge upphov till kännbara vibrationer eller påverka vibrationskänslig utrustning i byggnader. I Sverige förekommer ofta mjuka lerjordar ovanpå berg, och inte sällan i tätbebyggda områden. Under sådana jordförhållanden används ofta spetsbärande pålar för grundläggning av byggnader. Det dynamiska verkningssättet för byggnader är beroende av interaktionen mellan jorden och byggnadens grund. Det är därför viktigt att modeller som används för vibrationsanalys i byggnader kan beskriva denna interaktion mellan jord och byggnadsfundament. Syftet med denna avhandling är att experimentellt och via numeriska modeller studera dynamisk jord-struktur-interaktion av ett spetsbärande pålfundament i lera. Jordensmekaniska egenskaper vid små töjningar utvärderas för en lerjord som är avsatt på morän och berg genom både fältförsök och laboratorieanalyser av prover. Informationen kombineras för att konstruera en lagerförd jordmodell av platsen för att beräkna jordens dynamiska respons till följd av en punktlast. Modellen valideras med vibrationsmätningar som utförts på platsen. Studien visar att detaljerad information angående lerans materialdämpning och de mekaniska egenskaperna av jordens översta lager har en stor inverkan på förutsägelser av jordens dynamiska respons vid ytan, speciellt vid stora avstånd från vibrationskällan. Experimentella tester utförs för att mäta dynamiska impedanser av fyra slagna spetsbärande betongpålar. Interaktionen mellan pålarna utvärderas genom att utföra mätningarav de omgivande pålarnas respons till följd av excitering av en påle. Pålgruppen sammanfogas därefter i ett betongfundament och impedanserna samt accelerationer inuti pålarna uppmäts. En numerisk modell baserad på de identifierade mekaniska egenskaperna av jorden upprättas och valideras genom mätningarna. De numeriska resultaten är i god överensstämmelse med de uppmätta vilket styrker användningen av numeriska modeller för att förutsäga interaktionen mellan jord och spetsbärandepålar under de studerade jordförhållandena. / <p>QC 20210302</p>

Page generated in 0.0973 seconds