• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise de Impacto do Polimorfismo Genético do Subtipo C do HIV-1 na Interação da Protease Viral com o Inibidor Nelfinavir por Modelagem e Dinâmica Molecular / Analyse the Impact of Genetic Polymorphism of subtype C of HIV-1 Protease Inhibitors in the Interaction Viral With the Inhibitor Nelfinavir by Modeling and Molecular Dynamics

Soares, Rosemberg de Oliveira 28 November 2008 (has links)
Made available in DSpace on 2015-03-04T18:51:06Z (GMT). No. of bitstreams: 1 Tese.pdf: 24640886 bytes, checksum: 4120e048629aa78cd493eb576212d8ca (MD5) Previous issue date: 2008-11-28 / The human immunodeficiency virus (HIV) can be divided into HIV-1 and HIV-2. The former can be divided into groups: M, N and O. Group M, which represents 90% of infections, is divided into several subtypes (A, B, C, D, F, G, H, J and K). It is known today that the most prevalent subtype in the world (and in Africa) is the subtype C, although the most studied is B (prevalent in the U.S. and Western Europe). Several stages the HIV-1 replicating cycle have been identified as a target for pharmacologic intervention. One of the main targets is the enzyme aspartyl protease (PR), which processes the viral polyproteins Gag and Gag-Pol. Its inhibition results in the formation of non-infectious virus particles. Currently 10 PR inhibitors are used in clinic. However, the emergence of resistance to these inhibitors leads to a therapeutic failure. Several mutated amino acid residues that are present in resistant isolates have been identified. One of such resistance mutations is the D30N, which confers primary resistance exclusively to nelfinavir, has been described in patients infected with subtype B. However, clinical and laboratory studies showed that virus of subtype C with the mutation D30N (CD30N) has low incidence in clinical and reduced adaptability in vitro. To try to understand these differences caused by mutation D30N in subtypes B and C, we studied the interaction of these PRs with the peptide KARVLAEAM (analogous to the natural substrate of cleavage between the protein the capsid (CA) and p2 of HIV-1) and with the inhibitor nelfinavir. We have also studied the PR CD30N with the compensatory mutations N83T or N88D, found in vitro and in vivo, respectively, which occur when the subtype C acquires the mutation D30N. This work aimed to study the molecular and atomic mechanisms of mutation D30N in the PR of subtypes B and C. The results showed that the inhibitor and backbone of models BD30N and CD30N/N83T possessed the greatest variation, with respect to the initial structure. Although the mutants CD30N and CD30N/N88T have not suffered similar variations, they showed, as well as the other two mutants, a reduction in the intensity of the h-bonds that occur between PR and inhibitor which are located near the catalytic and the flaps regions. Also, all mutants had reduced hydrophobic contacts between the receptor and the ligand. Some data indicated that the flap of one of the chains is highly immobile in a model CD30N suggesting the mutation D30N impairs the contact of flap with the substrate in subtype C. Also, the analysis of the PR structure interacting with the substrate, indicated that the CD30N mutant has one of its α-helix regions unstructured, which can be directly associated with substrate cleavage. Our work provides important insights in to the effect of D30N mutation in the PR structure of the subtype C, and on its interaction with the substrate and the inhibitor. These data confirm and explain, at least in part, the smaller incidence of the studied mutation in that genetic subtype of HIV-1. / O HIV pode ser dividido em HIV-1 e HIV-2. Aquele, por sua vez, pode ser divido nos grupos: M, N e O. O grupo M, que representa 90% das infecções, foi dividido em vários subtipos (A, B, C, D, F, G, H, J e K). Sabe-se hoje que o subtipo mais circulante no mundo (a maior parte na África) é o C, entretanto o mais estudado é o B (prevalente nos EUA e Europa). Diversas etapas do ciclo replicativo do HIV-1 têm sido identificadas como alvos para intervenção farmacológica. Um dos principais alvos é a enzima aspartil protease (PR); é ela que processa as poliproteínas virais Gag e Gag-Pol e sua inibição resulta na formação de partículas virais não infecciosas, sendo atualmente 10 inibidores utilizados em clínica. No entanto, o aparecimento de resistência a esses inibidores leva à falha terapêutica, tendo sido identificados e estudados vários resíduos que se apresentam mutados em isolados resistentes. Uma dessas mutações de resistência é a D30N, que consiste numa mutação primária de resistência exclusiva ao nelfinavir descrita em pacientes soropositivos infectados pelo subtipo B. Entretanto, observações clínicas e laboratoriais mostraram que vírus do subtipo C com a mutação D30N (CD30N) têm baixíssima ocorrência clínica e adaptabilidade reduzida in vitro. Para tentar entender as diferenças causadas pela mutação D30N nos subtipos B e C, foi estudada a interação da PR destes vírus com o peptídeo KARVLAEAM (análogo ao substrato natural de clivagem entre a proteína do capsídeo (CA) e a proteína p2 do HIV-1) e com o inibidor nelfinavir. Também foi estudada a PR CD30N com as mutações compensatórias N83T e N88D, encontradas in vitro e in vivo respectivamente, que se manifestam quando o subtipo C sofre a mutação D30N. Este trabalho teve como objetivo estudar os mecanismos moleculares e atômicos dos efeitos da mutação D30N na PR dos subtipos B e C. Os resultados mostram que o inibidor e o esqueleto peptídico dos modelos BD30N e CD30N/N83T sofreram as maiores variações, em relação à estrutura inicial. Embora os mutantes CD30N e CD30N/N88D não tenham sofrido variação semelhante, eles apresentaram, assim como os outros dois mutantes, uma redução na intensidade das ligações de hidrogênio que ocorrem entre a PR e o inibidor que estão localizadas próximas à região catalítica e aos flaps. Além disso, todos os mutantes apresentaram redução em seus contatos hidrofóbicos ocorridos na interação receptor/ligante. Alguns dados obtidos indicam que a alça de uma das cadeias é altamente imóvel no modelo CD30N sugerindo que a mutação D30N prejudica o contato do flap com o substrato no subtipo C. Além disso, a análise da estrutura das PRs, interagindo com o substrato, indicou que o mutante CD30N tem uma de suas regiões de α-hélice desestruturada, o que pode estar diretamente associado a não clivagem do substrato. O nosso trabalho provê importantes insights sobre o efeito da mutação D30N na estrutura da PR do subtipo C, bem como na sua interação com o substrato e com o inibidor. Tais dados corroboram e explicam, ao menos em parte, a menor ocorrência da mutação estudada naquele variante genético do HIV-1.
2

Analyse the Impact of Genetic Polymorphism of subtype C of HIV-1 Protease Inhibitors in the Interaction Viral With the Inhibitor Nelfinavir by Modeling and Molecular Dynamics / Análise de Impacto do Polimorfismo Genético do Subtipo C do HIV-1 na Interação da Protease Viral com o Inibidor Nelfinavir por Modelagem e Dinâmica Molecular

Rosemberg de Oliveira Soares 28 November 2008 (has links)
The human immunodeficiency virus (HIV) can be divided into HIV-1 and HIV-2. The former can be divided into groups: M, N and O. Group M, which represents 90% of infections, is divided into several subtypes (A, B, C, D, F, G, H, J and K). It is known today that the most prevalent subtype in the world (and in Africa) is the subtype C, although the most studied is B (prevalent in the U.S. and Western Europe). Several stages the HIV-1 replicating cycle have been identified as a target for pharmacologic intervention. One of the main targets is the enzyme aspartyl protease (PR), which processes the viral polyproteins Gag and Gag-Pol. Its inhibition results in the formation of non-infectious virus particles. Currently 10 PR inhibitors are used in clinic. However, the emergence of resistance to these inhibitors leads to a therapeutic failure. Several mutated amino acid residues that are present in resistant isolates have been identified. One of such resistance mutations is the D30N, which confers primary resistance exclusively to nelfinavir, has been described in patients infected with subtype B. However, clinical and laboratory studies showed that virus of subtype C with the mutation D30N (CD30N) has low incidence in clinical and reduced adaptability in vitro. To try to understand these differences caused by mutation D30N in subtypes B and C, we studied the interaction of these PRs with the peptide KARVLAEAM (analogous to the natural substrate of cleavage between the protein the capsid (CA) and p2 of HIV-1) and with the inhibitor nelfinavir. We have also studied the PR CD30N with the compensatory mutations N83T or N88D, found in vitro and in vivo, respectively, which occur when the subtype C acquires the mutation D30N. This work aimed to study the molecular and atomic mechanisms of mutation D30N in the PR of subtypes B and C. The results showed that the inhibitor and backbone of models BD30N and CD30N/N83T possessed the greatest variation, with respect to the initial structure. Although the mutants CD30N and CD30N/N88T have not suffered similar variations, they showed, as well as the other two mutants, a reduction in the intensity of the h-bonds that occur between PR and inhibitor which are located near the catalytic and the flaps regions. Also, all mutants had reduced hydrophobic contacts between the receptor and the ligand. Some data indicated that the flap of one of the chains is highly immobile in a model CD30N suggesting the mutation D30N impairs the contact of flap with the substrate in subtype C. Also, the analysis of the PR structure interacting with the substrate, indicated that the CD30N mutant has one of its α-helix regions unstructured, which can be directly associated with substrate cleavage. Our work provides important insights in to the effect of D30N mutation in the PR structure of the subtype C, and on its interaction with the substrate and the inhibitor. These data confirm and explain, at least in part, the smaller incidence of the studied mutation in that genetic subtype of HIV-1. / O HIV pode ser dividido em HIV-1 e HIV-2. Aquele, por sua vez, pode ser divido nos grupos: M, N e O. O grupo M, que representa 90% das infecções, foi dividido em vários subtipos (A, B, C, D, F, G, H, J e K). Sabe-se hoje que o subtipo mais circulante no mundo (a maior parte na África) é o C, entretanto o mais estudado é o B (prevalente nos EUA e Europa). Diversas etapas do ciclo replicativo do HIV-1 têm sido identificadas como alvos para intervenção farmacológica. Um dos principais alvos é a enzima aspartil protease (PR); é ela que processa as poliproteínas virais Gag e Gag-Pol e sua inibição resulta na formação de partículas virais não infecciosas, sendo atualmente 10 inibidores utilizados em clínica. No entanto, o aparecimento de resistência a esses inibidores leva à falha terapêutica, tendo sido identificados e estudados vários resíduos que se apresentam mutados em isolados resistentes. Uma dessas mutações de resistência é a D30N, que consiste numa mutação primária de resistência exclusiva ao nelfinavir descrita em pacientes soropositivos infectados pelo subtipo B. Entretanto, observações clínicas e laboratoriais mostraram que vírus do subtipo C com a mutação D30N (CD30N) têm baixíssima ocorrência clínica e adaptabilidade reduzida in vitro. Para tentar entender as diferenças causadas pela mutação D30N nos subtipos B e C, foi estudada a interação da PR destes vírus com o peptídeo KARVLAEAM (análogo ao substrato natural de clivagem entre a proteína do capsídeo (CA) e a proteína p2 do HIV-1) e com o inibidor nelfinavir. Também foi estudada a PR CD30N com as mutações compensatórias N83T e N88D, encontradas in vitro e in vivo respectivamente, que se manifestam quando o subtipo C sofre a mutação D30N. Este trabalho teve como objetivo estudar os mecanismos moleculares e atômicos dos efeitos da mutação D30N na PR dos subtipos B e C. Os resultados mostram que o inibidor e o esqueleto peptídico dos modelos BD30N e CD30N/N83T sofreram as maiores variações, em relação à estrutura inicial. Embora os mutantes CD30N e CD30N/N88D não tenham sofrido variação semelhante, eles apresentaram, assim como os outros dois mutantes, uma redução na intensidade das ligações de hidrogênio que ocorrem entre a PR e o inibidor que estão localizadas próximas à região catalítica e aos flaps. Além disso, todos os mutantes apresentaram redução em seus contatos hidrofóbicos ocorridos na interação receptor/ligante. Alguns dados obtidos indicam que a alça de uma das cadeias é altamente imóvel no modelo CD30N sugerindo que a mutação D30N prejudica o contato do flap com o substrato no subtipo C. Além disso, a análise da estrutura das PRs, interagindo com o substrato, indicou que o mutante CD30N tem uma de suas regiões de α-hélice desestruturada, o que pode estar diretamente associado a não clivagem do substrato. O nosso trabalho provê importantes insights sobre o efeito da mutação D30N na estrutura da PR do subtipo C, bem como na sua interação com o substrato e com o inibidor. Tais dados corroboram e explicam, ao menos em parte, a menor ocorrência da mutação estudada naquele variante genético do HIV-1.

Page generated in 0.0908 seconds