Spelling suggestions: "subject:"epidermal growth factor receptor EGFR"" "subject:"épidermal growth factor receptor EGFR""
1 |
A novel mechanism for the anti-cancer activity of aspirin and its analoguesBashir, Asma'u Ismail Junaidu January 2017 (has links)
Colorectal cancer (CRC), which includes cancer of the large bowel and rectum is the third most common cancer in men and the second in women and there is a poorer survival rate in less developed regions of the world such as West Africa mainly due to the ‘out of reach’ costs of chemotherapy. Evidence suggests that aspirin, a non-steroidal anti-inflammatory drug (NSAID) has the potential to decrease incidence of, or mortality from, a number of cancers including CRC through several mechanisms of action. However, this evidence is dampened by aspirin’s gastrointestinal (GI) toxicity, which have been found to be mostly age-dependent. The search for potential aspirin-related compounds with the same or better cytotoxic effects against cancer cells accompanied by a safer toxicity profile has been ongoing over the years and led to us to synthesise a number of novel aspirin analogues. One of the mechanisms of action suggested for the anticancer property of aspirin is the COX-dependent pathway. In this thesis SW480 cell line, a CRC cell line that is COX-2 negative and mismatch repair (MMR) proficient was used to study the possible COX-independent mechanism of action for aspirin, its analogues and diflunisal at 0.5 mM. Diflunisal was included in this study because it is also a salicylate with reports of having cytotoxic effects. OE33 and FLO1 oesophageal cancer cells were also employed in the epidermal growth factor receptor (EGFR) and synergy experiments to show effects were not just specific to SW480 cells alone. These aspirin analogues were synthesised, identified using nuclear magnetic resonance (NMR) and infra-red (IR) spectroscopy, and tested for purity using thin layer chromatography (TLC) and melting point. The findings of this study suggest that these compounds breakdown into salicylates and perturb epidermal growth factor (EGF) internalization with PN517 (fumaryldiaspirin) and PN590 (ortho-thioaspirin) also driving EGF co-localization with early-endosome antigen-1 (EEA1). The perturbation of the internalization of EGF by aspirin and PN517 was also observed by a time-lapse assay using live confocal imaging. These compounds also had specific effects on different tyrosine phosphorylation sites of the EGFR, with none but PN590 inhibiting 4 phosphorylation at Y1068, and all but PN502 (ortho-aspirin), PN548 (meta-aspirin) and PN549 (para-aspirin) inhibiting phosphorylation at Y1045 and Y1173. Given that the EGF internalization assay involved the cells being treated with compounds for 2 h, cells were also treated for this same time period and probed with pEGFR 1045, which resulted in the compounds having no significant effect on phosphorylation at that site which is responsible for the ubiquitination of the EGFR. Most of these compounds were apoptotic with some showing a combination of apoptosis and necrosis. Aspirin and its isomers drove apoptotic cell death in SW480 cells via the BCL2-BAX pathway while the thioaspirins appear to follow the p21 pathway by decreasing the expression of the protein. In addition, it was shown that PN502 (aspirin), PN517 and PN590 had synergistic effects when used in combination with oxaliplatin at ED50, ED75 and ED90 in SW480 CRC cells. The cytotoxicity of these compounds individually or in combination was determined using MTT assay followed by the use of the CompuSyn and CalcuSyn software to calculate combination index (CI), which indicated whether a drug combination was synergistic, antagonistic or additive. PN517 and PN524 were synergistic when used in combination with cisplatin in OE33 oesophageal cancer cells. Effect of these compounds on the EGFR indicates a delay or disruption of the signalling pathway involved in the proliferation of cancer cells, thus, translating into protection against tumour formation or progression while the synergistic effects of these compounds when used in combination with platinum compounds can provide patients with less toxic chemotherapeutic regimen especially in patients with CRC tumours that harbour mutant TP53 gene and normally resistant to oxaliplatin. It is therefore proposed that the perturbation of EGF internalization is a novel mechanism of action for aspirin and its analogues in cancer therapy. These positive findings shed light on the understanding of the possible mechanism of action for aspirins and gives hope for a more affordable, less toxic therapy for the prevention, treatment and management of cancer.
|
2 |
Διερεύνηση του ρόλου του υποδοχέα του επιδερμικού αυξητικού παράγοντα και του Notch στο μη μικροκυτταρικό καρκίνο του πνεύμοναΚοτσιρίλου, Δήμητρα 11 October 2013 (has links)
Είναι ευρέως αποδεκτό και καλά τεκμηριωμένο ότι ο υποδοχέας του επιδερμικού αυξητικού παράγοντα (epidermal growth factor receptor, EGFR) ελέγχει σημαντικές λειτουργίες των καρκινικών κυττάρων, όπως τον πολλαπλασιασμό και την απόπτωση, αλλά και διαδικασίες όπου συμμετέχουν περισσότεροι του ενός τύποι κυττάρων, όπως τη διήθηση και την αγγειογένεση. Μεταξύ των τύπων καρκίνου, στην ανάπτυξη των οποίων συμμετέχει ο EGFR, είναι και ο μη μικροκυτταρικός καρκίνος του πνεύμονα (ΜΜΚΠ). Πολύ πρόσφατα δεδομένα δείχνουν ότι ένα άλλο μόριο που εμπλέκεται στην ανάπτυξη του καρκίνου του πνεύμονα είναι το Notch. Ο ρόλος του είναι περίπλοκος και διττός: Έχει προταθεί ότι το Notch επάγει την ανάπτυξη του ΜΜΚΠ και αναστέλλει την ανάπτυξη του μικροκυτταρικού καρκίνου του πνεύμονα (ΜΚΠ). Επιπλέον, έχει βρεθεί ότι το μονοπάτι μεταγωγής σήματος του Notch επηρεάζει, αλλά και επηρεάζεται από άλλα μόρια. Στην παρούσα μεταπτυχιακή εργασία διερευνήθηκε ο ρόλος του EGFR και του Notch στην ανάπτυξη κυττάρων ΜΜΚΠ χρησιμοποιώντας τον προσδέτη του EGFR, EGF και τον αναστολέα της γ-σεκρετάσης DAPT.
Για τη διεξαγωγή των πειραμάτων χρησιμοποιήθηκαν οι ανθρώπινες καρκινικές κυτταρικές σειρές ΜΜΚΠ Η23, Α549, Η661 και ΗCC827. Οι κυτταρικές σειρές Η23, Α549 και Η661 εκφράζουν τον αγρίου τύπου (wild type, wt) EGFR και η κυτταρική σειρά HCC827 εκφράζει EGFR που φέρει τη μετάλλαξη (mutation) (DE746- A750). Αρχικά με ανάλυση κατά western μελετήθηκε το προφίλ των κυττάρων ως προς τα επίπεδα έκφρασης του ενδοκυττάριου τμήματος του Notch (Notch Intracellular Domain, NICD). Βρέθηκε ότι τα κύτταρα Η23 εκφράζουν τα υψηλότερα επίπεδα Notch ICD, τα κύτταρα Η661 και HCC827 μέτρια επίπεδα και τα κύτταρα Α549 τα χαμηλότερα. Στη συνέχεια με τη μέθοδο του ΜΤΤ έγινε έλεγχος του DAPT στον πολλαπλασιασμό των κυττάρων και βρέθηκε ότι τα κύτταρα Η661 είχαν τη μεγαλύτερη αναστολή, παρόμοια συμπεριφορά έδειξαν και τα Α549. Τα κύτταρα Η23 εμφάνισαν μικρότερη ανταπόκριση σε σχέση με τα Η661 ενώ τα κύτταρα HCC827 εμφανίστηκαν ανθεκτικά στο DAPT. Η ανασταλτική δράση του DAPT στα κύτταρα Η661 συνοδεύτηκε με επαγωγή της απόπτωσης η οποία προσδιορίστηκε με τη μέθοδο αννεξίνης V καθώς και με επαγωγή της αυτοφαγίας η οποία ανιχνεύτηκε κάνοντας ανάλυση κατά western για τα πρωτεϊνικά επίπεδα της beclin-1. Περαιτέρω τα κύτταρα ενεργοποιήθηκαν με EGF και εν συνεχεία προστέθηκε DAPT. Παρατηρήθηκε ότι στα κύτταρα Η23 η προσθήκη του EGF δεν επέτρεψε να δράσει ανασταλτικά το DAPT ενώ στα Η661 εν μέρει ο EGF αντέστρεψε την ανασταλτική δράση του DAPT. Επιλέγοντας τις κυτταρικές σειρές Η23 και Η661, μελετήθηκε η δράση του DAPT και του EGF στα επίπεδα του Notch ICD. Παρατηρήθηκε ότι στα κύτταρα Η23, το DAPT μείωσε με χρονοεξαρτώμενο τρόπο τα πρωτεϊνικά επίπεδα του Notch ICD μέχρι και 6 ώρες μετά την προσθήκη του στα κύτταρα ενώ 24 ώρες μετά το φαινόμενο αντιστράφηκε. Η προσθήκη του EGF δεν επηρέασε τα επίπεδα του Notch ICD σε καμία από τις χρονικές στιγμές που μελετήθηκαν. Στα Η661 κύτταρα το DAPT προκάλεσε χρονοεξαρτώμενη μείωση των επιπέδων Notch ICD η οποία διήρκησε μέχρι και 24 ώρες μετά τη προσθήκη του DAPT. Ο EGF όπως και προηγουμένως δεν επηρέασε τα επίπεδα του Notch ICD. Παρατηρώντας ότι στα Η661 το DAPT ασκεί δράση με μεγαλύτερη διάρκεια σε σχέση με τα κύτταρα Η23, τα κύτταρα Η661 ενεργοποιήθηκαν με EGF και στη συνέχεια προστέθηκε το DAPT προκειμένου να δούμε τη δράση του συνδυασμού στα επίπεδα του Notch ICD. Βρέθηκε ότι ο EGF αντέστρεψε την μείωση των Notch ICD επιπέδων που προκαλεί μόνο του το DAPT.
Τα αποτελέσματα αναδεικνύουν ότι τα μονοπάτια του EGFR και του Notch, συνηγορούν προς την ίδια κατεύθυνση για τη μείωση του όγκου και αυτό υποδηλώνει έναν ελκυστικό δρόμο συνδυαστικών προσεγγίσεων για τη θεραπεία του ΜΜΚΠ, που μπορεί να ενισχύσει τη δράση των ανασταλτικών παραγόντων του EGFR σε όγκους.
Συμπερασματικά, θα μπορούσαμε να υποθέσουμε ότι στο ΜΜΚΠ: α) τα δύο μονοπάτια EGFR και Notch συνεπικουρούν για την ανάπτυξη του όγκου, β) η αναστολή του Notch είναι πιο αποτελεσματική σε κύτταρα με ενδιάμεσα επίπεδα ενεργού Notch 1, προκαλώντας τόσο απόπτωση όσο και αυτοφαγία, και γ) η μετάλλαξη του EGFR προσφέρει αντίσταση στη δράση αναστολέα της γ-σεκρετάσης. / It is widely accepted and well established that the epidermal growth factor receptor (EGFR) controls important processes of tumor cells, such as proliferation and apoptosis, but also processes involving more than one type of cells such as invasion and angiogenesis. It has been found that the EGFR has an important role in the development of several types of cancer including non-small cell lung cancer (NSCLC). Very recent data indicate that another molecule, which is involved in the development of lung cancer, is Notch. Its role is complicated and is under investigation. It is suspected that Notch has a growth promoting function in NSCLC, whereas exerts an inhibitory effect in small cell lung cancer (SCLC). Furthermore it has been found that the signaling pathway of Notch can affect/ can be affected by other molecules. This thesis investigated the role of EGFR and Notch in cell growth of NSCLC cells using the ligand of EGFR, EGF and gamma-secretase inhibitor, DAPT.
To conduct the experiments the human NSCLC cell lines H23, A549, H661 and HCC827 were used. The cell lines H23, A549 and H661 express the wild type (wt) EGFR and the cell line HCC827 expresses EGFR bearing the mutation (mt) DE746-A750. Initially, we studied the profile of NSCLC cells regarding the protein levels of Notch intracellular domain (Notch ICD) using western blot analysis. It was found that H23 cells express the higher levels Notch ICD, H661 and HCC827 cells express intermediate levels and A549 cells express the lowest levels of Notch ICD. The next step was the evaluation of DAPT effect in cell proliferation using the MTT assay. We found that DAPT caused the greatest inhibition to H661 and A549 cells. DAPT was less effective to H23 cells while had no effect to HCC827 cells. The inhibitory effect of DAPT in H661 cells was in line with the induction of apoptosis and autophagy, as was detected using annexin V assay and western blot analysis for beclin-1, respectively. Furthermore, cells were stimulated with EGF and subsequently DAPT was added. We found that the stimulatory effect of EGF was not reversed by DAPT in H23 cells. However a partial reverse of EGF stimulation was observed in H661 cells. The next step was to study the effect of DAPT and EGF at Notch ICD protein levels, in H23 and H661 cells. We found that DAPT reduced the protein levels of Notch ICD in H23 cells, with a time-dependent manner, up to 6 hours after DAPT addition and this effect reversed 24 hour later. The addition of EGF did not affect the levels of Notch ICD at any time point tested. In H661 cells, DAPT caused a time-dependent reduction of Notch ICD protein levels up to 24 hours after DAPT addition to cells. EGF as previously, did not affect the levels of Notch ICD in these cells. Since DAPT was more effective to H661 cells, these cells stimulated with EGF and then DAPT was added in order to study the effect of the combination at the levels of Notch ICD. We found that EGF reversed the decrease of Notch ICD protein levels caused by DAPT alone.
These results indicate that the pathways of EGFR and Notch might act with a synergistic fashion and this could be an attractive approach for the treatment of NSCLC.
Summarizing our results, we might assume that in NSCLC: a) both pathways of EGFR and Notch exert a significant role in tumor growth, b) the inhibition of Notch is more effective in cells with intermediate levels of activated Notch 1, causing both apoptosis and autophagy, and c) the EGFR mutation confers resistance to the effect of γ- secretase inhibitor.
|
3 |
Development and evaluation of new approaches for fluorescence-guided surgery and therapy of pancreatic ductal adenocarcinoma using orthotopic mouse modelsSaccomano, Mara 20 June 2016 (has links)
No description available.
|
4 |
Efeito da proteína dissulfeto isomerase na ativação do receptor do fator de crescimento epidermal (EGFR) durante o desenvolvimento da hipertensão arterial. Papel da Nox1 NADPH oxidase. / The effect of protein disulfide isomerase in the activation of the epidermal growth factor receptor (EGFR) during arterial hypertension. Role of Nox-1 NADPH oxidase.Costa, Edilene de Souza 29 February 2016 (has links)
Estudos caracterizaram o envolvimento da PDI na modulação da geração de EROs pela Nox1 como moduladores da migração de células do músculo liso vascular (VSMC) mediados por fatores de crescimento derivados de plaqueta (PDGF). Outros estudos vêm demonstrando o envolvimento do fator de crescimento epidermal (EGFR) no remodelamento vascular, após a transativação via Angiotensina II. Entretanto o papel da PDI na ativação do EGFR via Nox1 na hipertensão arterial ainda permanece desconhecido. Objetivo foi caracterizar o papel da PDI na expressão de Nox1 dependente do EGFR durante o desenvolvimento da hipertensão arterial. Resultados demonstram um aumento da expressão de HB-EGF e ativação de ERK 1/2 na aorta de animais SHR com 8 semanas e 12 semanas de idade, e no plasma de animais SHR com 12 semanas. Ainda, a OvxPDI acarretou em um aumento na expressão gênica de Nox-1 tanto na OVXPDI quanto na forma OvxPDIMUT. Resultados mostram um novo papel da PDI na expressão gênica de Nox-1 via EGFR e a participação desta tiol oxido redutase na gênese da hipertensão arterial. / Studies characterizing the involvement of PDI in the modulation of ROS by Nox1 as modulators of cell migration of vascular smooth muscle (VSMC) mediated by growth factors derived from platelets (PDGF). Other studies have demonstrated the involvement of the epidermal growth factor receptor (EGFR) on vascular remodeling after transactivation via Angiotensin II. However the role of PDI in the activation of EGFR via Nox1 in hypertension remains unknown. Objective was to characterize the role of PDI in Nox1 dependent EGFR expression during the development of hypertension. Results show an increase of HB-EGF expression and ERK 1/2 activation in the aortic SHR at 8 weeks and 12 weeks of age, and plasma SHR at 12 weeks. Still, the OvxPDI resulted in an increase in gene expression of Nox-1 both in OVXPDI and in OvxPDIMUT way. Results show a new role of PDI in gene expression of Nox-1 via EGFR and the participation of this thiol reductase oxide in the pathogenesis of hypertension.
|
5 |
Current Medical Treatment of Endocrine Pancreatic Tumors and Future AspectsFjällskog, Marie-Louise January 2002 (has links)
<p>We treated 16 patients with somatostatin analogs combined with α-interferon and achieved a biochemical and/or radiological response in 56% (median duration 22 months). We consider this treatment a good alternative for patients who fail during chemotherapy or who do not want to/cannot receive cytotoxic drugs.</p><p>Thirty-six patients with neuroendocrine tumors were treated with cisplatin combined with etoposide. Of 14 patients with evaluable EPTs, 50% responded radiologically and/or biochemically (median duration 9 months). We consider this treatment useful as first-line medical treatment in aggressive EPTs or in patients failing prior chemotherapy.</p><p>Twenty-eight tumor tissues from EPTs were examined with immunohistochemistry regarding expression of somatostatin receptors (ssts) 1 to 5 on tumor cells and in intratumoral vessels. We found that sst<sub>2</sub> and sst<sub>4</sub> were highly expressed on tumor cells and in vessels. However, sst<sub>3</sub> and sst<sub>5</sub> were lacking in half of the tumor tissues and in most of the vessels. Because of the variability in sst expression, we recommend analysis of each individual’s receptor expression before starting treatment.</p><p>Endocrine pancreatic tumors (EPTs) are rare with an incidence of 4 per million inhabitants. In the majority of cases they grow slowly, but there are exceptions with very rapidly progressing malignant carcinomas. First-line medical treatment is streptozotocin combined with 5-fluorouracil.</p><p>We examined 38 tumor samples regarding expression of tyrosine kinase receptors platelet-derived growth factor receptors (PDGFRs), c-kit and epidermal growth factor receptor (EGFR). We found that the receptors were expressed in more than half of the tumor tissues. Further studies will reveal if tyrosin kinase antagonists can be part of the future treatment arsenal.</p>
|
6 |
Current Medical Treatment of Endocrine Pancreatic Tumors and Future AspectsFjällskog, Marie-Louise January 2002 (has links)
We treated 16 patients with somatostatin analogs combined with α-interferon and achieved a biochemical and/or radiological response in 56% (median duration 22 months). We consider this treatment a good alternative for patients who fail during chemotherapy or who do not want to/cannot receive cytotoxic drugs. Thirty-six patients with neuroendocrine tumors were treated with cisplatin combined with etoposide. Of 14 patients with evaluable EPTs, 50% responded radiologically and/or biochemically (median duration 9 months). We consider this treatment useful as first-line medical treatment in aggressive EPTs or in patients failing prior chemotherapy. Twenty-eight tumor tissues from EPTs were examined with immunohistochemistry regarding expression of somatostatin receptors (ssts) 1 to 5 on tumor cells and in intratumoral vessels. We found that sst2 and sst4 were highly expressed on tumor cells and in vessels. However, sst3 and sst5 were lacking in half of the tumor tissues and in most of the vessels. Because of the variability in sst expression, we recommend analysis of each individual’s receptor expression before starting treatment. Endocrine pancreatic tumors (EPTs) are rare with an incidence of 4 per million inhabitants. In the majority of cases they grow slowly, but there are exceptions with very rapidly progressing malignant carcinomas. First-line medical treatment is streptozotocin combined with 5-fluorouracil. We examined 38 tumor samples regarding expression of tyrosine kinase receptors platelet-derived growth factor receptors (PDGFRs), c-kit and epidermal growth factor receptor (EGFR). We found that the receptors were expressed in more than half of the tumor tissues. Further studies will reveal if tyrosin kinase antagonists can be part of the future treatment arsenal.
|
7 |
Development of Epidermal Growth Factor Receptor (EGFR) Specific Nanoprobes for Surface Enhanced Raman Spectroscopy (SERS)Lucas, Leanne Jennifer 29 July 2013 (has links)
Novel biocompatible nanoprobes for optical imaging of Epidermal Growth Factor receptor (EGFR) were created. 5 and 18 nm gold nanoparticles (AuNPs) and 5 and 45 nm diameter silver nanoparticles (AgNPs) were conjugated to EGF protein via ?-lipoic acid. AgNPs were not previously attached to EGF. TOF-MS confirms EGF-linker formation. ELISA verifies the linked-EGF activity alone and with EGF-NPs. Core-shell silver-gold nanoparticles (AgAuNPs) gave similar results. TEM staining with uranyl acetate exhibits a bright ring, smaller than EGF, around nanoparticles. Dark field microscopy shows localized, intense cytoplasmic scattering, possibly lipid droplets, in cancer cells incubated with or without nanoprobes. Following injection, mice organs were harvested for EGF-NP immune response determination. Sterilization likely inactivated EGF before ICP-MS. Intense surface enhanced Raman scattering (SERS, 632.8 nm) follows MgSO4 induced EGF-AgNPs aggregation. Pelleted EGF-AgNP tagged cancer cells lack SERS indicative intensity contrast. AgAuNPs could provide increased stability, brighter SERS, and reduced silver biocompatibility concerns.
|
8 |
Efeito da proteína dissulfeto isomerase na ativação do receptor do fator de crescimento epidermal (EGFR) durante o desenvolvimento da hipertensão arterial. Papel da Nox1 NADPH oxidase. / The effect of protein disulfide isomerase in the activation of the epidermal growth factor receptor (EGFR) during arterial hypertension. Role of Nox-1 NADPH oxidase.Edilene de Souza Costa 29 February 2016 (has links)
Estudos caracterizaram o envolvimento da PDI na modulação da geração de EROs pela Nox1 como moduladores da migração de células do músculo liso vascular (VSMC) mediados por fatores de crescimento derivados de plaqueta (PDGF). Outros estudos vêm demonstrando o envolvimento do fator de crescimento epidermal (EGFR) no remodelamento vascular, após a transativação via Angiotensina II. Entretanto o papel da PDI na ativação do EGFR via Nox1 na hipertensão arterial ainda permanece desconhecido. Objetivo foi caracterizar o papel da PDI na expressão de Nox1 dependente do EGFR durante o desenvolvimento da hipertensão arterial. Resultados demonstram um aumento da expressão de HB-EGF e ativação de ERK 1/2 na aorta de animais SHR com 8 semanas e 12 semanas de idade, e no plasma de animais SHR com 12 semanas. Ainda, a OvxPDI acarretou em um aumento na expressão gênica de Nox-1 tanto na OVXPDI quanto na forma OvxPDIMUT. Resultados mostram um novo papel da PDI na expressão gênica de Nox-1 via EGFR e a participação desta tiol oxido redutase na gênese da hipertensão arterial. / Studies characterizing the involvement of PDI in the modulation of ROS by Nox1 as modulators of cell migration of vascular smooth muscle (VSMC) mediated by growth factors derived from platelets (PDGF). Other studies have demonstrated the involvement of the epidermal growth factor receptor (EGFR) on vascular remodeling after transactivation via Angiotensin II. However the role of PDI in the activation of EGFR via Nox1 in hypertension remains unknown. Objective was to characterize the role of PDI in Nox1 dependent EGFR expression during the development of hypertension. Results show an increase of HB-EGF expression and ERK 1/2 activation in the aortic SHR at 8 weeks and 12 weeks of age, and plasma SHR at 12 weeks. Still, the OvxPDI resulted in an increase in gene expression of Nox-1 both in OVXPDI and in OvxPDIMUT way. Results show a new role of PDI in gene expression of Nox-1 via EGFR and the participation of this thiol reductase oxide in the pathogenesis of hypertension.
|
9 |
From NF-κB to FACT: Mechanisms and Translational Applications of EGFR-mediated NF-κB RegulationDermawan, Josephine Kam Tai 03 September 2015 (has links)
No description available.
|
Page generated in 0.0936 seconds