• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

UPDATED MOLECULAR GENETICS AND PATHOGENESIS OF ICHTHYOSES

AKIYAMA, MASASHI 08 1900 (has links)
No description available.
2

Disease-causing Keratin Mutations and Cytoskeletal Dysfunction in Human Skin : In vitro Models and new Pharmacologic Strategies for Treating Epidermolytic Genodermatoses

Chamcheu, Jean Christopher January 2010 (has links)
Epidermolysis bullosa simplex (EBS) and epidermolytic ichthyosis (EI) are rare skin fragility diseases characterized by intra-epidermal blistering due to autosomal dominant-negative mutations in basal (KRT5 or KRT14) and suprabasal (KRT1 or KRT10) keratin genes,  respectively. Despite vast knowledge in the disease pathogenesis, the pathomechanisms are not fully understood, and no effective remedies exist. The purpose of this work was to search for keratin gene mutations in EBS patients, to develop in vitro models for studying EBS and EI, and to investigate novel pharmacological approaches for both diseases. We identified both novel and recurrent KRT5 mutations in all studied EBS patients but one which did not show any pathogenic keratin mutations. Using cultured primary keratinocytes from EBS patients, we reproduced a correlation between clinical severity and cytoskeletal instability in vitro. Immortalized keratinocyte cell lines were established from three EBS and three EI patients with different phenotypes using HPV16-E6E7. Only cell lines derived from severely affected patients exhibited spontaneous keratin aggregates under normal culture conditions. However, heat stress significantly induced keratin aggregates in all patient cell lines. This effect was more dramatic in cells from patients with a severe phenotype. In organotypic cultures, the immortalized cells were able to differentiate and form a multilayered epidermis reminiscent of those observed in vivo. Addition of two molecular chaperones, trimethylamine N-oxide dihydrate (TMAO) and sodium 4-phenylbutyrate (4-PBA), reduced the keratin aggregates in both stressed and unstressed EBS and EI keratinocytes, respectively. The mechanism of action of TMAO and 4-PBA was shown to involve the endogenous chaperone system (Heat shock proteins e.g. Hsp70). Besides, MAPK signaling pathways also seemed to be incriminated in the pathogenesis of EBS. Furthermore, depending on which type of keratin is mutated, 4-PBA up-regulated Hsp70 and KRT4 (possibly compensating for mutated KRT1/5), and down-regulated KRT1 and KRT10, which could further assist in protecting EBS and EI cells against stress. In conclusion, novel and recurrent pathogenic keratin mutations have been identified in EBS. Immortalized EBS and EI cell lines that functionally reflect the disease phenotype were established. Two pharmacologic agents, TMAO and 4-PBA, were shown to be promising candidates as novel treatment of heritable keratinopathies in this in vitro model.

Page generated in 0.0444 seconds