• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 275
  • 56
  • 54
  • 20
  • 10
  • 10
  • 8
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 507
  • 86
  • 80
  • 65
  • 53
  • 53
  • 49
  • 47
  • 45
  • 35
  • 35
  • 33
  • 29
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Dual-mode reflectance and fluorescence confocal microscope for near real-time morphological and molecular imaging of tissue

Carlson, Alicia Lacy 28 August 2008 (has links)
Not available / text
252

Central role for Sonic hedgehog-triggered pericytes in hindbrain choroid plexus development

Yang, Peter 25 February 2014 (has links)
The choroid plexus is an organ within each brain ventricle comprised of elaborate folds of epithelium (CPe) and vasculature. It performs numerous functions essential for brain development and health, including secretion of cerebrospinal fluid (CSF) and acting as the blood-CSF barrier. Functionality requires: (1) that CPe and vasculature develop in register and in close proximity, so that the CPe ensheaths the vasculature at a high surface area to volume ratio, which permits efficient CSF secretion; and (2) that CPe barrier integrity is sustained throughout choroid plexus expansion. Genetic experiments in mouse embryos have identified a central role for Sonic hedgehog (Shh) in coordinating these developmental challenges. Specifically, Shh is secreted by differentiated CPe and drives choroid plexus expansion. In the absence of Shh, a hypoplastic choroid plexus forms, which is deficient in CPe, vasculature, and villous folds. Two choroid plexus cell populations respond to Shh: (1) rhombic lip-resident CPe progenitor cells and (2) vascular pericytes. Here, I present evidence that canonical Shh signaling to CPe progenitors alone is insufficient to fully drive their proliferation at normal rates. Rather, Shh-triggered pericytes appear to secondarily boost CPe progenitor cell proliferation, in addition to acting in vascular development. Shh-triggered pericytes also appear necessary for formation of the characteristic folds of the choroid plexus. Thus, pericytes coordinate the expansion of choroid plexus epithelium and vasculature. Notch signaling was also explored and was found to inhibit the differentiation of CPe progenitors, maintaining them in a proliferative state. Notch activation in CPe progenitors leads to invaginated tubules from the overproliferating CPe progenitor domain, without associated vascular growth or villous folds. Folding morphogenesis may thus be regulated by vascular components such as pericytes, and require that vascular growth match CPe growth. To identify Shh-induced pericyte signaling programs that might underlie these developmental processes, expression profiling was performed on dsRed-labeled pericytes isolated from Shh-deficient versus wild-type choroid plexuses. Candidate genes, including several involved in lipid metabolism, were identified. Collectively, this work points to pericytes as central in orchestrating the coordinated elaboration of multiple choroid plexus cell types, producing the complex tissue architecture required for efficient CSF production.
253

Effects of Disease-Causing Mutations Associated with Five Bestrophinopathies on the Localization and Oligomerization of Bestrophin-1

Johnson, Adiv Adam January 2014 (has links)
Mutations in BEST1, the gene encoding for Bestrophin-1 (Best1), cause five, clinically distinct inherited retinopathies: Best vitelliform macular dystrophy (BVMD), adult-onset vitelliform macular dystrophy (AVMD), autosomal recessive bestrophinopathy (ARB), autosomal dominant vitreoretinochoroidopathy (ADVIRC), and retinitis pigmentosa (RP). Little is known regarding how BEST1 mutations cause disease and why mutations cause multiple disease phenotypes. Within the eye, Best1 is a homo-oligomeric, integral membrane protein that is exclusively localized to the basolateral plasma membrane of the retinal pigment epithelium (RPE). Here, it regulates intracellular Ca2+ signaling and putatively mediates anion transport. Since defects in localization and oligomerization are known to underlie other channelopathies, we investigated how mutations causal for BVMD, AVMD, ARB, ADVIRC, and RP impact the localization and oligomerization of Best1. We generated replication-defective adenoviral vectors encoding for WT and 31 mutant forms of Best1 associated with these five diseases and expressed them in confluent, polarized Madin-Darby canine kidney and/or RPE cells. Localization was assessed via immunofluorescence and confocal microscopy. Oligomerization was examined using live-cell fluorescence resonance energy transfer (FRET) as well as reciprocal co-immunoprecipitation experiments. We report that all 31 BVMD, AVMD, ARB, ADVIRC, and RP mutants tested can reciprocally co-immunoprecipitate with and exhibit comparable FRET efficiencies to WT Best1, indicative of unimpaired oligomerization. While all RP and ADVIRC mutants were properly localized to the basolateral plasma membrane, many but not all AVMD, ARB, and BVMD mutants were mislocalized to intracellular compartments. When co-expressed with WT Best1, mislocalized mutants predominantly co-localized with WT Best1 in intracellular compartments. Studies involving four ARB truncation mutants reveal that the first 174 amino acids are sufficient to mediate oligomerization with WT Best1 and that amino acids 472-585 are not necessary for proper trafficking. We conclude that, although mislocalization is a common result of BEST1 mutation, it is not an absolute feature of any individual bestrophinopathy. Moreover, we show that some recessive mutants mislocalize WT Best1 when co-expressed, indicating that mislocalization cannot, on its own, generate a disease phenotype, and that the absence of Best1 at the plasma membrane is well tolerated.
254

Aquaporin-1 Mediated Fluid Movement in Ocular Tissues

Baetz, Nicholas William January 2009 (has links)
Aquaporin proteins significantly increase water permeability across tissues and cell membranes. Ocular tissues, including the trabecular meshwork (TM) and retinal pigment epithelium (RPE), are especially reliant on aquaporin mediated water movement for ocular homeostasis. Even though bulk fluid movement is paracellular through the TM and transcellular through the RPE, both express aquaporin-1 (AQP1). The role and regulation of AQP1 as it relates to homeostasis in different ocular tissues is not well understood. I hypothesized that ocular tissues respond to external mechanical and molecular cues by altering AQP1 expression and function in order to regulate ocular fluid movement and maintain homeostasis.To test how AQP1 function is altered in response to external cues in order to maintain tissue-specific homeostasis, I addressed the following two aims. The first aim was directed at determining how mechanical strain, an external stimulus that routinely affects TM function, influences AQP1 expression and TM homeostasis. Primary cultures of human TM were subjected to static and cyclic stretch and then analyzed for changes in AQP1 expression by western blot and cell damage by activity of lactate dehydrogense (LDH) in conditioned media. The results show AQP1 expression and LDH release significantly increased with static stretch. Analysis of LDH release with respect to AQP1 expression revealed an inverse linear relationship (r² = 0.7780).The second aim was directed at characterizing signaling mechanisms responsible for regulating fluid transport in RPE, previously shown to be dependent upon AQP1. I treated primary cultures of human RPE with either atrial natriuretic peptide (ANP) or 8-bromo-cyclic guanosine monophosphate (8-Br-cGMP) in the presence or absence of Anantin (ANP-receptor inhibitor) or H-8 (Protein Kinase G inhibitor). The results show that ANP and 8-Br-cGMP significantly increased apical to basal net fluid movement (p < 0.05, n = 3). Inhibition of these effects was successful with Anantin treatment but not with application of H-8.The data presented demonstrate a novel role of protection for AQP1 in TM, and also expand upon cGMP dependent regulation of RPE fluid transport. The combined studies indicate tissue specific AQP1 regulation may offer new avenues to target water movement in treatment of ocular pathologies.
255

FUNCTIONAL ADAPTATION OF THE RUMINAL EPITHELIUM

2013 December 1900 (has links)
Short chain fatty acids (SCFA) synthesized in the rumen from carbohydrate fermentation are an essential energy source for ruminants. Current literature supports that SCFA are absorbed across the rumen epithelium via passive diffusion or protein-mediated transport, however, the rate and degree to which these pathways adapt to a change in diet fermentability is unknown. Furthermore, Na+ flux is partially determined by SCFA absorption, and thus is a key indicator of functional changes in the rumen epithelium. The objectives of this study were to determine the time required for a change in SCFA and Na+ absorption across the bovine rumen epithelium and to evaluate the rate and degree to which absorption pathways adapt to an increase in diet fermentability relative to changes in surface area. Twenty-five weaned Holstein steer calves were blocked by body weight and randomly assigned to either the control diet (CON; 91.5% hay and 8.5% vitamin/mineral supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain, and 8.5% vitamin/mineral supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 d (G21). All calves were fed at 2.25% BW at 0800 h. Reticular pH was recorded every 5 min for 48 h prior to killing (1000 h). Ruminal tissue was collected for Ussing chamber, barrier function, surface area measurements, and gene expression. Net 22Na+ flux (JNET-Na; 80 kBq/15 mL), the rate and pathway of mucosal to serosal 3H-acetate (JMS-acetate; 37 kBq/15 mL) and 14C-butyrate (JMS-butyrate; 74 kBq/15 mL) flux, and serosal to mucosal flux of 3H-mannitol (JSM-mannitol; 74 KBq/15 mL) and tissue conductance were measured. Half of the chambers assigned to measure JMS-acetate and JMS-butyrate were further assigned to 1 of 2 acetate and butyrate concentration treatments: 10 mM (Low) and 50 mM (High). Furthermore, JSM-mannitol flux was also measured during an acidotic and hyperosmotic challenge (CHAL) and recovery (REC) to measure barrier function of ruminal tissue. Mean reticular pH, which was positively correlated with ruminal pH (R2 = 0.5477), decreased from 6.90 for CON to 6.59 for G7 then increased. Net Na+ flux increased 125% within 7 d. Total JMS-acetate and JMS-butyrate increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway. Total JMS-acetate and JMS-butyrate were greater when incubated in High vs. Low. Effective surface area of the ruminal epithelium was not affected by dietary treatment. Increased JSM-mannitol, tissue conductance, and increased expression of IL-1β and TLR2 (tendencies) with increased days fed the moderate grain diet indicated reduced rumen epithelium barrier function. Furthermore, the CHAL treatment reduced barrier function, which was not reversible during REC. This study indicates that a moderate increase in diet fermentability increases rumen epithelium absorptive function in the absence of increased SA, but reduces barrier function. Data from this study also suggests that absorption and barrier function follow different timelines, posing a challenge for ruminant diet adaptation to moderately to highly fermentable diets.
256

c-Myc dans le développeemnt rénal et la polykystose rénale autosomique dominante

Couillard, Martin January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
257

Airway effects of diesel exhaust in healthy and asthmatic subjects

Nordenhäll, Charlotta January 2002 (has links)
Several epidemiological studies have revealed an association between particulate matter (PM) pollution and various health effects. Importantly, there is evidence to suggest that individuals with pre-existing respiratory disease, such as asthma, are more sensitive to elevated ground levels of particulate matter as compared to healthy subjects. Among the various sources of PM pollution, diesel powered vehicles have been identified as important contributors. The aim of this thesis was to investigate the airway effects of experimental chamber exposure to diesel exhaust (DE) in healthy and asthmatic subjects, focusing on airway responsiveness, airway inflammation and lung function. To achieve a comprehensive picture of the airway responses to DE, a number of different methods were used, including lung function measurements, methacholine inhalation tests, induced sputum and bronchoscopy. Each subject acted as his/her own control by being exposed both to filtered air and DE in a crossover design. Short term exposure to DE, at a particle concentration (PMi0) of 300 ug/m3, was associated with a clinically significant increase in bronchial hyperresponsiveness in asthmatic subjects. In accordance with the epidemiological data suggesting a 1-4 day lag effect for most health outcomes to PM pollution, the increase was detected one day after DE exposure, indicating a long lasting response to DE in asthmatic airways. Diesel exhaust induced a range of airway inflammatory changes as reflected in induced sputum, bronchoalveolar lavage and bronchial mucosal biopsies. In healthy subjects, DE exposure was associated with an increase in neutrophils and IL-6 in sputum, elevated levels of IL-8 and IL-6 in bronchial wash (BW), enhanced expression of IL-8 and GRO-a in the bronchial epithelium and with increases in P-selectin and VCAM-1 in the airway mucosa. In contrast, asthmatics responded with an increase in IL-6 in sputum and an enhanced expression of IL-10 in the bronchial epithelium following exposure DE. Thus, clear differences were identified between healthy and asthmatic subjects in the inflammatory response to DE. Airway epithelial cells constitute the first line of cellular defence towards inhaled air pollutants and increasing evidence suggests that these cells contribute markedly to the initiation of airway inflammatory responses. The bronchial epithelium was identified to have an important regulatory role in response to diesel exhaust, including the capacity to produce chemoattractant and immunoregulatory proteins associated with development of airway inflammation and bronchial hyperresponsiveness. Lung function measurements revealed that short-term exposure to DE induces an immediate bronchoconstrictive response in both healthy and asthmatic individuals, with significant increases in airway resistance (Raw) following DE exposure. This thesis also investigated the effects of a lower concentration of DE (PMio 100 ug/m3) than previously studied. It was shown that exposure to DE at a concentration corresponding to a PM level that may be encountered in busy traffic situations, was still associated with potentially adverse airway responses in healthy and asthmatic subjects. In summary, the results presented here indicate that short term exposure to diesel exhaust, at high ambient concentrations, has the potential to induce a range of biological events in the airways of healthy and asthmatic subjects. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 2002, härtill 4 uppsatser.</p> / digitalisering@umu
258

Effects of Streptococcus Thermophilus Bacteria on rat gene expression profiles

CHEGDANI, FATIMA 24 February 2011 (has links)
In questo studio abbiamo analizzato l'impatto dellethermophiluds Streptococcus sull'epitelio del colon di ratto. Dopo la generazione del modello di ratto axenico e inoculato con S. thermophilus abbiamo investigato l'interazione tra il batterio e epithelo del colon di ratto. Dopo questo studio integrativo abbiamo analizzato l’espressione genica del colon usando due diversi approcci: Ibridazione sottrattiva I trascritti ottenuti dopo il sequenziamento dei cloni ottenuti con la SSH sono stati raggruppati in diversi categorie funzionali: arresto del ciclo cellulare e induzione del differenziamento, comunicazione cellulare e binding . due geni candidati sono stati privilegiati, krupel like fattore 4 e 14-3-3σ. Questi geni candidati sono stati analizzati mediante RT-PCR, qRT-PCR e Western Blot in animali mono-associati e in animali germ-free. I test hanno confermato che l’espressione dei geni candidati aumenta in presenza di S. thermophilus. Microarray Analysis. L’spressione genica è stata misurata per due gruppi di animali: i) ratti privi di germi, ii) ratti mono-associati con il ceppo LMD9 di Streptococcus thermophilus. I risultati delle analisi dei dati di microarray indicano che Streptococcus thermophilus influenza notevolmente l'espressione genica nelle cellule epiteliali del colon. / In this study we have investigated the impact of Streptococcus thermophiluds on the rat colonic epithelium. After generation of the model axenic rat and inoculated with S. thermophilus we have investigated the interplay between bacteria and host colon. Colonic epithelium gene expression was investigated also, with two different approaches: Suppressive Subtractive Hybridization. The subtraction library was prepared subtracting mRNA between epithelial cells from colonic mono-associated rats and germ-free rats. The transcripts generated by SSH were grouped into divers Functional groups: cell-cycle arrest and induction of differentiation; cell-communication and binding. Tow candidates genes were privileged, krupel like factor 4 and 14-3-3σ. These candidate genes were tested by RT-PCR, qRT-PCR and Western blot in mono-associated animals and in germ-free animals. The tests confirmed that candidate genes increase their expression in the presence of S. thermophilus. Microarray analysis. Gene expression was measured in tow groups of animals: i) germ-free rats; ii) mono-associated rats inoculated with LMD9 strain of Streptococcus thermophilus. The results of microarray analysis data show that Streptococcus thermophilus remarkably affected gene expression in the colonic epithelial cells. Streptococcus thermophilus enhanced the expression of genes involved in different pathways in the host, compared to the gem free group.
259

Bovine Models of Human Retinal Disease: Effect of Perivascular Cells on Retinal Endothelial Cell Permeability

Tretiach, Marina Louise January 2005 (has links)
Doctor of Philosophy (Medicine) / Background: Diabetic vascular complications affect both the macro- and microvasculature. Microvascular pathology in diabetes may be mediated by biochemical factors that precipitate cellular changes at both the gene and protein levels. In the diabetic retina, vascular pathology is found mainly in microvessels, including the retinal precapillary arterioles, capillaries and venules. Macular oedema secondary to breakdown of the inner blood-retinal barrier is the most common cause of vision impairment in diabetic retinopathy. Müller cells play a critical role in the trophic support of retinal neurons and blood vessels. In chronic diabetes, Müller cells are increasingly unable to maintain their supportive functions and may themselves undergo changes that exacerbate the retinal pathology. The consequences of early diabetic changes in retinal cells are primarily considered in this thesis. Aims: This thesis aims to investigate the effect of perivascular cells (Müller cells, RPE, pericytes) on retinal endothelial cell permeability using an established in vitro model. Methods: Immunohistochemistry, cell morphology and cell growth patterns were used to characterise primary bovine retinal cells (Müller cells, RPE, pericytes and endothelial cells). An in vitro model of the blood-retinal barrier was refined by coculturing retinal endothelial cells with perivascular cells (Müller cells or pericytes) on opposite sides of a permeable Transwell filter. The integrity of the barrier formed by endothelial cells was assessed by transendothelial electrical resistance (TEER) measurements. Functional characteristics of endothelial cells were compared with ultrastructural morphology to determine if different cell types have barrier-enhancing effects on endothelial cell cultures. Once the co-culture model was established, retinal endothelial cells and Müller cells were exposed to different environmental conditions (20% oxygen, normoxia; 1% oxygen, hypoxia) to examine the effect of perivascular cells on endothelial cell permeability under reduced oxygen conditions. Barrier integrity was assessed by TEER measurements and permeability was measured by passive diffusion of radiolabelled tracers from the luminal to the abluminal side of the endothelial cell barrier. A further study investigated the mechanism of laser therapy on re-establishment of retinal endothelial cell barrier integrity. Müller cells and RPE, that comprise the scar formed after laser photocoagulation, and control cells (Müller cells and pericytes, RPE cells and ECV304, an epithelial cell line) were grown in long-term culture and treated with blue-green argon laser. Lasered cells were placed underneath confluent retinal endothelial cells growing on a permeable filter, providing conditioned medium to the basal surface of endothelial cells. The effect of conditioned medium on endothelial cell permeability was determined, as above. Results: Co-cultures of retinal endothelial cells and Müller cells on opposite sides of a permeable filter showed that Müller cells can enhance the integrity of the endothelial cell barrier, most likely through soluble factors. Low basal resistances generated by endothelial cells from different retinal isolations may be the result of erratic growth characteristics (determined by ultrastructural studies) or the selection of vessel fragments without true ‘barrier characteristics’ in the isolation step. When Müller cells were co-cultured in close apposition to endothelial cells under normoxic conditions, the barrier integrity was enhanced and permeability was reduced. Under hypoxic conditions, Müller cells had a detrimental effect on the integrity of the endothelial cell barrier and permeability was increased in closely apposed cells. Conditioned medium from long-term cultured Müller cells and RPE that typically comprise the scar formed after lasering, enhanced TEER and reduced permeability of cultured endothelial cells. Conclusions: These studies confirm that bovine tissues can be used as a suitable model to investigate the role of perivascular cells on the permeability of retinal endothelial cells. The dual effect of Müller cells on the retinal endothelial cell barrier under different environmental conditions, underscores the critical role of Müller cells in regulating the blood-retinal barrier in health and disease. These studies also raise the possibility that soluble factor(s) secreted by Müller cells and RPE subsequent to laser treatment reduce the permeability of retinal vascular endothelium. Future studies to identify these factor(s) may have implications for the clinical treatment of macular oedema secondary to diseases including diabetic retinopathy.
260

Soft tissue integration to dental implants /

Welander, Maria, January 2008 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet , 2008. / Härtill 5 uppsatser.

Page generated in 0.0357 seconds