• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-property relationship in core-shell rubber toughened epoxy nanocomposites

Gam, Ki Tak 30 September 2004 (has links)
The structure-property relationships of epoxy nanocomposites with inorganic layer-structure nanofillers have been studied to obtain the fundamental understanding of the role of nanofillers and the physics of polymer nanocomposites in this dissertation. Several polymer nanocomposite systems with modified montmorillonite (MMT) or α-zirconium phosphate (ZrP) nanofillers were prepared with epoxy matrices of different ductility and properties. The successful nanofiller's exfoliations were confirmed with X-ray diffraction and transmision electronic microscopy (TEM). Dynamic mechanical analysis (DMA) on the prepared epoxy nanocomposites revealed the significant increase in rubbery plateau moduli of the epoxy nanocomposite systems above Tg, as high as 4.5 times, and tensile test results showed improved modulus by the nanofiller addition, while the fracture toughenss was not affected or slightly decreased by nanofillers. The brittle epoxy nanocomposite systems were toughened with core shell rubber (CSR) particles and showed remarkable increase in fracture toughness (KIC) value up to 270%. The CSR toughening is more effective at ductile matrices, and TEM observation indicates that major toughening mechanisms induced by the CSR addition involve a large scale CSR cavitation, followed by massive shear deformation of the matrix.
2

Dielectric Properties of Epoxy/Alumina Nanocomposite Influenced by Control of Micrometric Agglomerates

Hayakawa, Naoki, Takei, Masafumi, Hoshina, Yoshikazu, Hanai, Masahiro, Kato, Katsumi, Okubo, Hitoshi, Kurimoto, Muneaki 06 1900 (has links)
No description available.
3

Permittivity Characteristics of Epoxy/Alumina Nanocomposite with High Particle Dispersibility by Combining Ultrasonic Wave and Centrifugal Force

Hayakawa, Naoki, Takei, Masafumi, Hoshina, Yoshikazu, Hanai, Masahiro, Kato, Katsumi, Okubo, Hitoshi, Kurimoto, Muneaki 05 August 2010 (has links)
No description available.
4

Structure-property relationship in core-shell rubber toughened epoxy nanocomposites

Gam, Ki Tak 30 September 2004 (has links)
The structure-property relationships of epoxy nanocomposites with inorganic layer-structure nanofillers have been studied to obtain the fundamental understanding of the role of nanofillers and the physics of polymer nanocomposites in this dissertation. Several polymer nanocomposite systems with modified montmorillonite (MMT) or α-zirconium phosphate (ZrP) nanofillers were prepared with epoxy matrices of different ductility and properties. The successful nanofiller's exfoliations were confirmed with X-ray diffraction and transmision electronic microscopy (TEM). Dynamic mechanical analysis (DMA) on the prepared epoxy nanocomposites revealed the significant increase in rubbery plateau moduli of the epoxy nanocomposite systems above Tg, as high as 4.5 times, and tensile test results showed improved modulus by the nanofiller addition, while the fracture toughenss was not affected or slightly decreased by nanofillers. The brittle epoxy nanocomposite systems were toughened with core shell rubber (CSR) particles and showed remarkable increase in fracture toughness (KIC) value up to 270%. The CSR toughening is more effective at ductile matrices, and TEM observation indicates that major toughening mechanisms induced by the CSR addition involve a large scale CSR cavitation, followed by massive shear deformation of the matrix.

Page generated in 0.057 seconds