Spelling suggestions: "subject:"equações diferencia bidimensionais"" "subject:"equações diferencia bidirecionais""
1 |
Movimentos sob atração focal em campos vetoriais planares / Motions under focal attraction in planar vector fieldsMARTINS, Tiberio Bittencourt de Oliveira 29 August 2008 (has links)
Made available in DSpace on 2014-07-29T16:02:23Z (GMT). No. of bitstreams: 1
Dissertacao Tiberio Bittencourt.pdf: 638703 bytes, checksum: b4eef7616f38b5efeb40a4c5c26e0b75 (MD5)
Previous issue date: 2008-08-29 / In this work, we develop the article On the motion under focal attraction
in a rotating medium , of J. Sotomayor, which deals with a bidimensional
differential system that model the following Biological problem: in a shallow
recipient with circular section, with liquid in, spinning with angular speed ω, there
are platyhelminthes, flatworms organisms, they are attracted by a fix lighting
point near of the border of the recipient and they swim with a speed v in the
direction of the this point. The problem is to show that there exists an equilibrium
point where platyhelminthes go to cluster by the time passing. It s analyzed the
dynamic of the model: existence of critical points and stability of the system and
bifurcations. We analyzed three modifications of this system too. In the last
part, it s discussed a criterium for non existence of periodic orbits of a planar
vector fields in a simply connected region. / Neste trabalho, desenvolvemos o artigo On the motion under focal attraction in a rotating medium de J. Sotomayor [9] que trata de um sistema de equações diferenciais bidimensional que modela o seguinte problema na Biologia:
num recipiente raso de seção circular, com líquido, girando a uma velocidade angular ω, existem platelmintos, organismos vermiforme, eles s ao atra´ıdos por um ponto luminoso fixo perto da borda do recipiente e nadam com uma velocidade
v em direçãoa este ponto. O problema é mostrar que existe um ponto de equilíbrio onde os platelmintos vão se aglomerar com o passar do tempo. É analisada a dinâmica da modelagem: existência de pontos de equilibrio e estabilidade
do sistema e bifurcaçoes. Analisamos tambem tres modificaçoes desse sistema.
Na parte final, e discutido um criterio para determinaçao da ausencia de orbitas
periodicas em campos vetoriais planares.
|
Page generated in 0.0795 seconds