• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Movimentos sob atração focal em campos vetoriais planares / Motions under focal attraction in planar vector fields

MARTINS, Tiberio Bittencourt de Oliveira 29 August 2008 (has links)
Made available in DSpace on 2014-07-29T16:02:23Z (GMT). No. of bitstreams: 1 Dissertacao Tiberio Bittencourt.pdf: 638703 bytes, checksum: b4eef7616f38b5efeb40a4c5c26e0b75 (MD5) Previous issue date: 2008-08-29 / In this work, we develop the article On the motion under focal attraction in a rotating medium , of J. Sotomayor, which deals with a bidimensional differential system that model the following Biological problem: in a shallow recipient with circular section, with liquid in, spinning with angular speed ω, there are platyhelminthes, flatworms organisms, they are attracted by a fix lighting point near of the border of the recipient and they swim with a speed v in the direction of the this point. The problem is to show that there exists an equilibrium point where platyhelminthes go to cluster by the time passing. It s analyzed the dynamic of the model: existence of critical points and stability of the system and bifurcations. We analyzed three modifications of this system too. In the last part, it s discussed a criterium for non existence of periodic orbits of a planar vector fields in a simply connected region. / Neste trabalho, desenvolvemos o artigo On the motion under focal attraction in a rotating medium de J. Sotomayor [9] que trata de um sistema de equações diferenciais bidimensional que modela o seguinte problema na Biologia: num recipiente raso de seção circular, com líquido, girando a uma velocidade angular ω, existem platelmintos, organismos vermiforme, eles s ao atra´ıdos por um ponto luminoso fixo perto da borda do recipiente e nadam com uma velocidade v em direçãoa este ponto. O problema é mostrar que existe um ponto de equilíbrio onde os platelmintos vão se aglomerar com o passar do tempo. É analisada a dinâmica da modelagem: existência de pontos de equilibrio e estabilidade do sistema e bifurcaçoes. Analisamos tambem tres modificaçoes desse sistema. Na parte final, e discutido um criterio para determinaçao da ausencia de orbitas periodicas em campos vetoriais planares.

Page generated in 0.0795 seconds