Spelling suggestions: "subject:"equations - anumerical solutions."" "subject:"equations - bnumerical solutions.""
131 |
Algebraic properties of ordinary differential equations.Leach, Peter Gavin Lawrence. January 1995 (has links)
In Chapter One the theoretical basis for infinitesimal transformations is
presented with particular emphasis on the central theme of this thesis which
is the invariance of ordinary differential equations, and their first integrals,
under infinitesimal transformations. The differential operators associated with
these infinitesimal transformations constitute an algebra under the operation
of taking the Lie Bracket. Some of the major results of Lie's work are recalled.
The way to use the generators of symmetries to reduce the order of a differential
equation and/or to find its first integrals is explained. The chapter concludes
with a summary of the state of the art in the mid-seventies just before the
work described here was initiated.
Chapter Two describes the growing awareness of the algebraic properties of
the paradigms of differential equations. This essentially ad hoc period demonstrated
that there was value in studying the Lie method of extended groups
for finding first integrals and so solutions of equations and systems of equations.
This value was emphasised by the application of the method to a class of
nonautonomous anharmonic equations which did not belong to the then pantheon
of paradigms. The generalised Emden-Fowler equation provided a route
to major development in the area of the theory of the conditions for the linearisation
of second order equations. This was in addition to its own interest.
The stage was now set to establish broad theoretical results and retreat from
the particularism of the seventies.
Chapters Three and Four deal with the linearisation theorems for second
order equations and the classification of intrinsically nonlinear equations according
to their algebras. The rather meagre results for systems of second
order equations are recorded.
In the fifth chapter the investigation is extended to higher order equations
for which there are some major departures away from the pattern established
at the second order level and reinforced by the central role played by these
equations in a world still dominated by Newton. The classification of third
order equations by their algebras is presented, but it must be admitted that
the story of higher order equations is still very much incomplete.
In the sixth chapter the relationships between first integrals and their algebras
is explored for both first order integrals and those of higher orders. Again
the peculiar position of second order equations is revealed.
In the seventh chapter the generalised Emden-Fowler equation is given a
more modern and complete treatment.
The final chapter looks at one of the fundamental algebras associated with
ordinary differential equations, the three element 8£(2, R), which is found in all
higher order equations of maximal symmetry, is a fundamental feature of the
Pinney equation which has played so prominent a role in the study of nonautonomous
Hamiltonian systems in Physics and is the signature of Ermakov
systems and their generalisations. / Thesis (Ph.D.)-University of Natal, 1995.
|
132 |
Exact solutions for relativistic models.Ngubelanga, Sifiso Allan. 31 October 2013 (has links)
In this thesis we study spherically symmetric spacetimes related to the Einstein field equations. We consider only neutral matter and apply the Einstein field equations with isotropic pressures. Our object is to model relativistic stellar systems. We express the Einstein field equations and the condition of pressure isotropy in terms of Schwarzschild coordinates and isotropic coordinates. For Schwarzschild coordinates we consider the
transformations due to Buchdahl (1959), Durgapal and Bannerji (1983), Fodor (2000) and Tewari and Pant (2010). The condition of pressure isotropy is integrated and new exact solutions of the field equations are obtained utilizing the transformations of Buchdahl (1959) and Tewari and Pant (2010). These exact solutions are given in terms of elementary functions. For isotropic coordinates we can express the condition of pressure isotropy as a Riccati equation or a linear equation. An algorithm is developed that produces a new solution if a particular solution is known. The transformations reduce to a nonlinear Bernoulli equation in most instances. There are fundamentally three new classes of solutions to the condition of pressure isotropy. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2011.
|
133 |
A classification of second order equations via nonlocal transformations.Edelstein, R. M. January 2000 (has links)
The study of second order ordinary differential equations is vital given their proliferation in
mechanics. The group theoretic approach devised by Lie is one of the most successful techniques
available for solving these equations. However, many second order equations cannot be reduced
to quadratures due to the lack of a sufficient number of point symmetries. We observe that
increasing the order will result in a third order differential equation which, when reduced via an
alternate symmetry, may result in a solvable second order equation. Thus the original second
order equation can be solved.
In this dissertation we will attempt to classify second order differential equations that can
be solved in this manner. We also provide the nonlocal transformations between the original
second order equations and the new solvable second order equations.
Our starting point is third order differential equations. Here we concentrate on those invariant
under two- and three-dimensional Lie algebras. / Thesis (M.Sc.)-University of Natal, Durban, 2000.
|
134 |
Aspects of spherically symmetric cosmological models.Moodley, Kavilan. January 1998 (has links)
In this thesis we consider spherically symmetric cosmological models when the shear
is nonzero and also cases when the shear is vanishing. We investigate the role of
the Emden-Fowler equation which governs the behaviour of the gravitational field.
The Einstein field equations are derived in comoving coordinates for a spherically
symmetric line element and a perfect fluid source for charged and uncharged matter.
It is possible to reduce the system of field equations under different assumptions to
the solution of a particular Emden-Fowler equation. The situations in which the
Emden-Fowler equation arises are identified and studied. We analyse the Emden-Fowler
equation via the method of Lie point symmetries. The conditions under which
this equation is reduced to quadratures are obtained. The Lie analysis is applied to
the particular models of Herlt (1996), Govender (1996) and Maharaj et al (1996) and
the role of the Emden-Fowler equation is highlighted. We establish the uniqueness
of the solutions of Maharaj et al (1996). Some physical features of the Einstein-Maxwell
system are noted which distinguishes charged solutions. A charged analogue
of the Maharaj et al (1993) spherically symmetric solution is obtained. The Gutman-Bespal'ko
(1967) solution is recovered as a special case within this class of solutions
by fixing the parameters and setting the charge to zero. It is also demonstrated
that, under the assumptions of vanishing acceleration and proper charge density,
the Emden-Fowler equation arises as a governing equation in charged spherically
symmetric models. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
|
135 |
Efficient neural networks for prediction of turbulent flowZhao, Wei 12 1900 (has links)
No description available.
|
136 |
Numerical multigrid algorithm for solving integral equationsPaul, Subrata 03 May 2014 (has links)
Integral equations arise in many scienti c and engineering problems. A large
class of initial and boundary value problems can be converted to Volterra
or Fredholm integral equations. The potential theory contributed more
than any eld to give rise to integral equations. Integral equations also
has signi cant application in mathematical physics models, such as di rac-
tion problems, scattering in quantum mechanics, conformal mapping and
water waves. The Volterra's population growth model, biological species
living together, propagation of stocked sh in a new lake, the heat transfer
and the heat radiation are among many areas that are described by integral
equations. For limited applicability of analytical techniques, the numer-
ical solvers often are the only viable alternative. General computational
techniques of solving integral equation involve discretization and generates
equivalent system of linear equations. In most of the cases the discretization
produces dense matrix. Multigrid methods are widely used to solve partial
di erential equation. We discuss the multigrid algorithms to solve integral
equations and propose usages of distributive relaxation and the Kaczmarz
method. / Department of Mathematical Sciences
|
137 |
Spherically symmetric solutions in relativistic astrophysics.John, Anslyn James. January 2002 (has links)
In this thesis we study classes of static spherically symmetric spacetimes admitting a perfect
fluid source, electromagnetic fields and anisotropic pressures. Our intention is to generate
exact solutions that model the interior of dense, relativistic stars. We find a sufficient
condition for the existence of series solutions to the condition of pressure isotropy for neutral
isolated spheres. The existence of a series solution is demonstrated by the method of
Frobenius. With the help of MATHEMATICA (Wolfram 1991) we recovered the Tolman
VII model for a quadratic gravitational potential, but failed to obtain other known classes
of solution. This establishes the weakness, in certain instances, of symbolic manipulation
software to extract series solutions from differential equations. For a cubic potential, we
obtained a new series solution to the Einstein field equations describing neutral stars. The
gravitational and thermodynamic variables are non-singular and continuous. This model also
satisfies the important barotropic equation of state p = p(p). Two new exact solutions to
the Einstein-Maxwell system, that generalise previous results for uncharged stars, were also
found. The first of these generalises the solution of Maharaj and Mkhwanazi (1996), and has
well-behaved matter and curvature variables. The second solution reduces to the Durgapal
and Bannerji (1983) model in the uncharged limit; this new result may only serve as a toy
model for quark stars because of negative energy densities. In both examples we observe that
the solutions may be expressed in terms of hypergeometric and elementary functions; this
indicates the possibility of unifying isolated solutions under the hypergeometric equation.
We also briefly study compact stars with spheroidal geometry, that may be charged or admit
anisotropic pressure distributions. The adapted forms of the pressure isotropy condition can
be written as a harmonic oscillator equation. Two simple examples are presented. / Thesis (M.Sc.)-University of Natal, Durban, 2002.
|
138 |
The weakly nonlinear stability of an oscillatory fluid flowReid, Francis John Edward, School of Mathematics, UNSW January 2006 (has links)
A weakly nonlinear stability analysis was conducted for the flow induced in an incompressible, Newtonian, viscous fluid lying between two infinite parallel plates which form a channel. The plates are oscillating synchronously in simple harmonic motion. The disturbed velocity of the flow was written in the form of a series in powers of a parameter which is a measure of the distance away from the linear theory neutral conditions. The individual terms of this series were decomposed using Floquet theory and Fourier series in time. The equations at second order and third order in were derived, and solutions for the Fourier coefficients were found using pseudospectral methods for the spatial variables. Various alternative methods of computation were applied to check the validity of the results obtained. The Landau equation for the amplitude of the disturbance was obtained, and the existence of equilibrium amplitude solutions inferred. The values of the coefficients in the Landau equation were calculated for the nondimensional channel half-widths h for the cases h = 5, 8, 10, 12, 14 and 16. It was found that equilibrium amplitude solutions exist for points in wavenumber Reynolds number space above the smooth portion of the previously determined linear stability neutral curve in all the cases examined. Similarly, Landau coefficients were calculated on a special feature of the neutral curve (called a ???finger???) for the case h = 12. Equilibrium amplitude solutions were found to exist at points inside the finger, and in a particular region outside near the top of the finger. Traces of the x-components of the disturbance velocities have been presented for a range of positions across the channel, together with the size of the equilibrium amplitude at these positions. As well, traces of the x-component of the velocity of the disturbed flow and traces of the velocity of the basic flow have been given for comparison at a particular position in the channel.
|
139 |
Numerical solution of differential equationsSankar, R. I. January 1967 (has links)
No description available.
|
140 |
Unsteady hydrodynamic interaction of ships in the proximity of fixed objectsTan, Wooi Tong. January 1979 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Ocean Engineering, 1979 / Bibliography: leaves 65-66. / Wooi Tong Tan. / M.S. / M.S. Massachusetts Institute of Technology, Department of Ocean Engineering
|
Page generated in 0.1464 seconds