Spelling suggestions: "subject:"equations -- anumerical solutions"" "subject:"equations -- bnumerical solutions""
111 |
Gravitoelectromagnetism and the question of stability in general relativityStark, Elizabeth January 2004 (has links)
Abstract not available
|
112 |
The weakly nonlinear stability of an oscillatory fluid flowReid, Francis John Edward, School of Mathematics, UNSW January 2006 (has links)
A weakly nonlinear stability analysis was conducted for the flow induced in an incompressible, Newtonian, viscous fluid lying between two infinite parallel plates which form a channel. The plates are oscillating synchronously in simple harmonic motion. The disturbed velocity of the flow was written in the form of a series in powers of a parameter which is a measure of the distance away from the linear theory neutral conditions. The individual terms of this series were decomposed using Floquet theory and Fourier series in time. The equations at second order and third order in were derived, and solutions for the Fourier coefficients were found using pseudospectral methods for the spatial variables. Various alternative methods of computation were applied to check the validity of the results obtained. The Landau equation for the amplitude of the disturbance was obtained, and the existence of equilibrium amplitude solutions inferred. The values of the coefficients in the Landau equation were calculated for the nondimensional channel half-widths h for the cases h = 5, 8, 10, 12, 14 and 16. It was found that equilibrium amplitude solutions exist for points in wavenumber Reynolds number space above the smooth portion of the previously determined linear stability neutral curve in all the cases examined. Similarly, Landau coefficients were calculated on a special feature of the neutral curve (called a ???finger???) for the case h = 12. Equilibrium amplitude solutions were found to exist at points inside the finger, and in a particular region outside near the top of the finger. Traces of the x-components of the disturbance velocities have been presented for a range of positions across the channel, together with the size of the equilibrium amplitude at these positions. As well, traces of the x-component of the velocity of the disturbed flow and traces of the velocity of the basic flow have been given for comparison at a particular position in the channel.
|
113 |
On existence and uniqueness of weak solutions to the Navier-Stokes equations in R3Peterson, Samuel H. (Samuel Houston) 08 June 2012 (has links)
This thesis is on the existence and uniqueness of weak solutions to the Navier-Stokes equations in R3 which govern the velocity of incompressible fluid with viscosity ν. The solution is obtained in the space of tempered distributions on R3 given an initial condition and forcing data which are dominated by majorizing kernels. The solution takes the form of an expectation of functionals on a Markov process indexed by a binary branching tree. / Graduation date: 2012
|
114 |
A state-variable approach to the solution of Fredholm integral equations.January 1967 (has links)
Bibliography: p. 36.
|
115 |
Nonlinear static and dynamic analysis of beam structures using fully intrinsic equationsSotoudeh, Zahra 05 July 2011 (has links)
Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis.
This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables.
In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research.
This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.
|
116 |
Computational and astrophysical studies of black hole spacetimesBonning, Erin Wells 28 August 2008 (has links)
Not available / text
|
117 |
Incompressible fluids with vorticity in Besov spacesCozzi, Elaine Marie, 1978- 28 August 2008 (has links)
In this thesis, we consider soltions to the two-dimensional Euler equations with uniformly continuous initial vorticity in a critical or subcritical Besov space. We use paradifferential calculus to show that the solution will lose an arbitrarily small amount of smoothness over any fixed finite time interval. This result is motivated by a theorem of Bahouri and Chemin which states that the Sobolev exponent of a solution to the two-dimensional Euler equations in a critical or subcritical Sobolev space may decay exponentially with time. To prove our result, one can use methods similar to those used by Bahouri and Chemin for initial vorticity in a Besov space with Besov exponent between 0 and 1; however, we use different methods to prove a result which applies for any Sobolev exponent between 0 and 2. The remainder of this thesis is based on joint work with J. Kelliher. We study the vanishing viscosity limit of solutions of the Navier-Stokes equations to solutions of the Euler equations in the plane assuming initial vorticity is in a variant Besov space introduced by Vishik. Our methods allow us to extend a global in time uniqueness result established by Vishik for the two-dimensional Euler equations in this space. / text
|
118 |
MULTIRATE INTEGRATION OF TWO-TIME-SCALE DYNAMIC SYSTEMSKeepin, William North. January 1980 (has links)
Simulation of large physical systems often leads to initial value problems in which some of the solution components contain high frequency oscillations and/or fast transients, while the remaining solution components are relatively slowly varying. Such a system is referred to as two-time-scale (TTS), which is a partial generalization of the concept of stiffness. When using conventional numerical techniques for integration of TTS systems, the rapidly varying components dictate the use of small stepsizes, with the result that the slowly varying components are integrated very inefficiently. This could mean that the computer time required for integration is excessive. To overcome this difficulty, the system is partitioned into "fast" and "slow" subsystems, containing the rapidly and slowly varying components of the solution respectively. Integration is then performed using small stepsizes for the fast subsystem and relatively large stepsizes for the slow subsystem. This is referred to as multirate integration, and it can lead to substantial savings in computer time required for integration of large systems having relatively few fast solution components. This study is devoted to multirate integration of TTS initial value problems which are partitioned into fast and slow subsystems. Techniques for partitioning are not considered here. Multirate integration algorithms based on explicit Runge-Kutta (RK) methods are developed. Such algorithms require a means for communication between the subsystems. Internally embedded RK methods are introduced to aid in computing interpolated values of the slow variables, which are supplied to the fast subsystem. The use of averaging in the fast subsystem is discussed in connection with communication from the fast to the slow subsystem. Theoretical support for this is presented in a special case. A proof of convergence is given for a multirate algorithm based on Euler's method. Absolute stability of this algorithm is also discussed. Four multirate integration routines are presented. Two of these are based on a fixed-step fourth order RK method, and one is based on the variable step Runge-Kutta-Merson scheme. The performance of these routines is compared to that of several other integration schemes, including Gear's method and Hindmarsh's EPISODE package. For this purpose, both linear and nonlinear examples are presented. It is found that multirate techniques show promise for linear systems having eigenvalues near the imaginary axis. Such systems are known to present difficulty for Gear's method and EPISODE. A nonlinear TTS model of an autopilot is presented. The variable step multirate routine is found to be substantially more efficient for this example than any other method tested. Preliminary results are also included for a pressurized water reactor model. Indications are that multirate techniques may prove fruitful for this model. Lastly, an investigation of the effects of the step-size ratio (between subsystems) is included. In addition, several suggestions for further work are given, including the possibility of using multistep methods for integration of the slow subsystem.
|
119 |
First integrals for the Bianchi universes : supplementation of the Noetherian integrals with first integrals obtained by using Lie symmetries.Pantazi, Hara. January 1997 (has links)
No abstract available. / Thesis (M.Sc.)-University of Natal, 1997.
|
120 |
Ermakov systems : a group theoretic approach.Govinder, Kesh S. January 1993 (has links)
The physical world is, for the most part, modelled using second order ordinary differential equations. The time-dependent simple harmonic oscillator and the Ermakov-Pinney equation (which together form an Ermakov system) are two examples that jointly and separately describe many physical situations. We study Ermakov systems from the point of view of the algebraic properties
of differential equations. The idea of generalised Ermakov systems is introduced and their relationship to the Lie algebra sl(2, R) is explained. We show that the 'compact' form of generalized Ermakov systems has an infinite dimensional Lie algebra. Such algebras are usually associated only with first order equations in the context of ordinary differential equations. Apart from the Ermakov invariant which shares the infinite-dimensional algebra of the 'compact' equation, the other three integrals force the dimension of the algebra to be reduced to the three of sl(2, R). Subsequently we establish a new class of Ermakov systems by considering equations invariant under sl(2, R) (in two dimensions) and sl(2, R) EB so(3) (in three dimensions). The former class contains the generalized Ermakov system as a special case in which the force is velocity-independent. The latter case is a generalization of the classical equation of motion of the magnetic monopole
which is well known to possess the conserved Poincare vector. We demonstrate that in fact there are three such vectors for all equations of this type. / Thesis (M.Sc.)-University of Natal, 1993.
|
Page generated in 0.1866 seconds