• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INVESTIGATION OF TECHNIQUES FOR FABRICATING PLASTIC OPTICAL COMPONENTS

Blecher, Stephen 08 1900 (has links)
QC 351 A7 no. 77 / Because of their light weight and low cost, transparent plastics would seem to be good materials for optical components. This thesis deals primarily with the feasibility of producing large ( >4 -in. -diam) plastic components of moderate precision (surface accuracies 1 fringe per inch of diameter). The structure and the physical and optical properties of plastics are discussed, with emphasis on their advantages and limitations for optical use. A series of experiments on grinding and polishing of plastics was conducted. Data are presented on grinding rates. Several polishing processes were evaluated, and a polishing technique for plastics was developed. Polishing rate data and surface roughness data are presented for several polishing processes. With proper techniques, we estimate that accuracies of about one fringe per inch are obtainable. A series of experiments was conducted on a process called compression forming, in which heat and pressure are applied to machined preforms in an attempt to obtain precision optical surfaces. The process is described in detail, and experimental results are discussed. Based on experimental results, improved processing conditions are suggested. Further experiments would be required to determine the ultimate process capability.
2

A Two Sample Test of the Reliability Performance of Equipment Components

Coleman, Miki Lynne 01 May 1972 (has links)
The purpose of this study was to develop a test which can be used to compare the reliability performances of two types of equipment components to determine whether or not the new component satisfies a given feasibility criterion. Two types of tests were presented and compared: the fixed sample size test and the truncated sequential probability ratio test. Both of these tests involve use of a statistic which is approximately distributed as F. This study showed that the truncated sequential probability ratio test has good potential as a means of comparing two component types to see whether or not the reliability of the new component is at least a certain number of times greater than the reliability of the old component.
3

An F/2 Focal Reducer For The 60-Inch U.S. Naval Observatory Telescope

Meinel, Aden B., Wilkerson, Gary W. 28 February 1968 (has links)
QC 351 A7 no. 07 / The Meinel Reducing Camera for the U. S. Naval Observatory's 60-inch telescope, Flagstaff, Arizona, comprises an f /10 collimator designed by Meinel and Wilkerson, and a Leica 50-mm f/2 Summicron camera lens. The collimator consists of a thick, 5-inch field lens located close to the focal plane of the telescope, plus four additional elements extending toward the camera. The collimator has an efl of 10 inches, yielding a 1-inch exit pupil that coincides with the camera's entrance pupil, 1.558 inches beyond the final surface of the collimator. There is room between the facing lenses of the collimator and camera to place filters and a grating. The collimated light here is the best possible situation for interference filters. Problems of the collimator design work included astigmatism due to the stop's being so far outside the collimator, and field curvature. Two computer programs were used in development of the collimator design. Initial work, begun in 1964, was with the University of Rochester's ORDEALS program (this was the first time the authors had used such a program) and was continued through July, 1965. Development subsequently was continued and completed on the Los Alamos Scientific Laboratory's program, LASL. The final design, completed January 24, 1966, was evaluated with ORDEALS. This project gave a good opportunity to compare ORDEALS, an "aberration" program, with LASL, a "ray deviation" program. It was felt that LASL was the superior program in this case, and some experimental runs beginning with flat slabs of glass indicated that it could have been used for the entire development of the collimator. Calculated optical performance of the design indicated that the reducing camera should be "seeing limited" for most work. Some astigmatism was apparent, but the amount did not turn out to be harmful in actual astronomical use. After the final design was arrived at, minor changes were made to accommodate actual glass indices of the final melt, and later to accommodate slight changes of radii and thicknesses of the elements as fabricated. An additional small change in spacing between two of the elements was made at the observatory after the reducing camera had been in use for a short time. The fabricated camera is working according to expectations. Some photographs are included in the report to illustrate its performance and utility.

Page generated in 0.067 seconds