• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Linearization and first-order expansion of the rocking motion of rigid blocks stepping on viscoelastic foundation

Palmeri, Alessandro, Makris, N. January 2008 (has links)
In structural mechanics there are several occasions where a linearized formulation of the original nonlinear problem reduces considerably the computational effort for the response analysis. In a broader sense, a linearized formulation can be viewed as a first-order expansion of the dynamic equilibrium of the system about a `static¿ configuration; yet caution should be exercised when identifying the `correct¿ static configuration. This paper uses as a case study the rocking response of a rigid block stepping on viscoelastic supports, whose non-linear dynamics is the subject of the companion paper, and elaborates on the challenge of identifying the most appropriate static configuration around which a first-order expansion will produce the most dependable results in each regime of motion. For the regime when the heel of the block separates, a revised set of linearized equations is presented, which is an improvement to the unconservative equations published previously in the literature. The associated eigenvalues demonstrate that the characteristics of the foundation do not affect the rocking motion of the block once the heel separates.
2

An investigation into nonlinear random vibrations based on Wiener series theory

Demetriou, Demetris January 2019 (has links)
In support of society's technological evolution, the study of nonlinear systems in engineering and sciences has become a vital research area. Aiming to contribute in this field, this thesis investigates the behaviour of nonlinear systems using the 'Wiener theories'. As a useful example the Duffing oscillator is investigated in this work. In many real-life applications, nonlinear systems are excited randomly so this work examines systems under white-noise excitation using the Wiener series. Equivalent Linearisation (EL) is a well-known and simple method that approximates a nonlinear system by an equivalent linear system. However, it has deficiencies which this thesis attempts to improve. Initially, the performance of EL for different types of nonlinearities will be assessed and an alternative method to enhance it is suggested. This requires the calculation of the first Wiener kernel of various system defined quantities. The first Wiener kernel, as it will be shown, is the foundation of this research and a central element of the Wiener theory. In this thesis, an analytical proof to explain the interesting behaviour of the first Wiener kernel for a system with nonlinear stiffness is included using an energy transfer approach. Furthermore, the method mentioned above to enhance EL known as the Single-Pole Fit method (SPF) is to be tested for different kinds of systems to prove its robustness and validity. Its direct application to systems with nonlinear stiffness and nonlinear damping is shown as well as its ability to perform for systems with two degrees of freedom where an extension of the SPF method is required to achieve the desired solution. Finally, an investigation to understand and replicate the complex behaviour observed by the first Wiener kernel in the early chapters is carried out. The groundwork for this investigation is done by modelling an isolated nonlinear spring with a series of linear filters and certain nonlinear operations. Subsequently, an attempt is made to relate the principles governing the successful spring model presented to the original nonlinear system. An iterative procedure is used to demonstrate the application of this method, which also enables this new modelling approach to be related to the SPF method.
3

Frequency-domain modelling of floating wind turbines

Lupton, Richard January 2015 (has links)
The development of new types of offshore wind turbine on floating platforms requires the development of new approaches to modelling the combined platform-turbine system. In this thesis a linearised frequency-domain approach is developed which gives fast but approximate results: linearised models of the structural dynamics, hydrodynamics, aerodynamics and control system dynamics are brought together to find the overall response of the floating wind turbine to harmonic wind and wave loading. Initially, a nonlinear flexible multibody dynamics code is developed and verified, which is then used to provide reference nonlinear simulation results. The structural dynamics of a wind turbine on a moving platform are shown to be nonlinear, but for realistic conditions the effects are small. An approximate analysis of the second-order response of floating cylinders to hydrodynamic loads suggests slow drift motion may be relatively small for floating wind turbines, compared to other floating offshore structures. The aerodynamic loads are linearised using both harmonic and tangent linearisation approaches; the harmonic linearisation gives improved results when stall occurs. The wake dynamics can also be included. The control system behaviour is linearised using the same method, which works well when the wind speed is far from the rated wind speed; close to the rated wind speed the nonlinearity is stronger, but further improvement should be possible. These sub-models are combined to give a simple but complete model of a floating wind turbine, with flexible blades and a flexible tower, but neglecting the control system behaviour, wake dynamics and nonlinear hydrodynamic loads. For the OC3-Hywind turbine, the accuracy of the results is assessed by comparison to nonlinear time-domain simulations using the commercial code Bladed. Peak-peak errors of less than 5 % are achievable for many harmonic wind and wave inputs, but certain conditions lead to larger errors. The effect of including linearised control system behaviour is demonstrated for a subset of conditions. Overall, the results are promising but more work is needed for practical application.

Page generated in 0.1185 seconds