• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem cinética e de equilíbrio combinadas para simulação de processos de gaseificação

Rodrigues, Rodolfo January 2015 (has links)
A gaseificação é um processo de conversão termoquímica que compreende a oxidação parcial de um combustível para convertê-lo em uma mistura gasosa (“syngas”). Geralmente a modelagem desses processos utiliza uma descrição cinética detalhada ou os aproximam ao equilíbrio químico. Ambas as abordagens têm vantagens e desvantagens, bem como limitações. O objetivo deste trabalho foi o desenvolvimento de uma nova modelagem fenomenológica de processos de gaseificação através de um modelo “híbrido” aqui chamado de modelo híbrido adaptativo por zonas (HAZ). Este modelo assumiu que o gaseificador é representado por zonas de dois tipos: uma dominada pela cinética química, representada por um modelo cinético, e outra onde a cinética química é rápida e as espécies químicas estão em equilíbrio químico, representada por um modelo de equilíbrio. Um critério de transição entre as zonas foi proposto através de um número de Damköhler (Da) que relaciona tempos de residência e de reação química. Desta forma, o modelo adapta-se conforme os processos dominantes em cada zona. Em um primeiro momento, um modelo de equilíbrio multifásico (EM) foi desenvolvido e aplicado para um estudo da cogaseificação de carvão mineral e biomassas disponíveis no Brasil. A seguir, o modelo HAZ foi construído através da técnica de rede equivalente de reatores químicos (ERN) a partir do modelo EM e de um modelo cinético, também desenvolvido neste trabalho. Uma metodologia de aplicação do modelo HAZ foi proposta, aplicada e validada para duas configurações de gaseificadores: dois casos de gaseificadores de biomassa em leito fluidizado borbulhante e um caso de gaseificador de carvão mineral em leito de arraste. Para os dois primeiros casos foi estimada que a transição ocorra para Da ≥ 10+5 e para o último caso; chegou-se a Da ≥ 10+3. A aplicação do modelo HAZ se mostrou satisfatória sendo que foi possível a redução do tempo computacional em pelo menos 40% com relação a uma abordagem puramente cinética. Cabe ressaltar ainda que o modelo HAZ possibilitou um maior entendimento físico e químico ao identificar os processos dominantes locais. / Gasification is a thermochemical conversion process consisting of partial oxidation of a fuel to convert it to a gas mixture (“syngas”). Generally, the gasification process modeling uses a kinetic detailed description, or approach it to a chemical equilibrium state. Both approaches have advantages and disadvantages, as well as limitations. The objective of this work was to develop a new phenomenological modeling of gasification processes through a “hybrid” model here called hybrid adaptive zone model (HAZ). This proposed modeling assumed the gasifier is represented by two types of zones: one dominated by chemical kinetics, represented by a kinetic model, and another where chemical kinetics is fast so chemical species are assumed in chemical equilibrium states, represented by an equilibrium model. A transition criterion between zones was defined by a Damköhler number (Da) which relates residence time and chemical reaction time. Therefore, the HAZ model can adapted according to the dominant processes in each zone. Firstly, a multi-phase equilibrium model (ME) was developed and applied to study the coal-biomass co-gasification of Brazilian sources. Hereafter, the HAZ model was built using the technique of equivalent reactor network (ERN) with the ME model and a kinetic model developed in this work. A methodology of use of the HAZ model was proposed, applied and validated for two configurations of gasifiers: two cases of biomass bubbling fluidized-bed gasifiers and one case of coal entrained-flow gasifier. In the first two cases the transition was estimated to occur on Da ≥ 10+5 and in the last case; we estimated on Da ≥ 10+3. The application of the HAZ model proved to be satisfactory since it could reduce the computation time by at least 40% compared to a pure kinetic approach. It should already be emphasized that the HAZ model allowed a better physical and chemical understanding of gasification by identifying the dominant local processes.
2

Modelagem cinética e de equilíbrio combinadas para simulação de processos de gaseificação

Rodrigues, Rodolfo January 2015 (has links)
A gaseificação é um processo de conversão termoquímica que compreende a oxidação parcial de um combustível para convertê-lo em uma mistura gasosa (“syngas”). Geralmente a modelagem desses processos utiliza uma descrição cinética detalhada ou os aproximam ao equilíbrio químico. Ambas as abordagens têm vantagens e desvantagens, bem como limitações. O objetivo deste trabalho foi o desenvolvimento de uma nova modelagem fenomenológica de processos de gaseificação através de um modelo “híbrido” aqui chamado de modelo híbrido adaptativo por zonas (HAZ). Este modelo assumiu que o gaseificador é representado por zonas de dois tipos: uma dominada pela cinética química, representada por um modelo cinético, e outra onde a cinética química é rápida e as espécies químicas estão em equilíbrio químico, representada por um modelo de equilíbrio. Um critério de transição entre as zonas foi proposto através de um número de Damköhler (Da) que relaciona tempos de residência e de reação química. Desta forma, o modelo adapta-se conforme os processos dominantes em cada zona. Em um primeiro momento, um modelo de equilíbrio multifásico (EM) foi desenvolvido e aplicado para um estudo da cogaseificação de carvão mineral e biomassas disponíveis no Brasil. A seguir, o modelo HAZ foi construído através da técnica de rede equivalente de reatores químicos (ERN) a partir do modelo EM e de um modelo cinético, também desenvolvido neste trabalho. Uma metodologia de aplicação do modelo HAZ foi proposta, aplicada e validada para duas configurações de gaseificadores: dois casos de gaseificadores de biomassa em leito fluidizado borbulhante e um caso de gaseificador de carvão mineral em leito de arraste. Para os dois primeiros casos foi estimada que a transição ocorra para Da ≥ 10+5 e para o último caso; chegou-se a Da ≥ 10+3. A aplicação do modelo HAZ se mostrou satisfatória sendo que foi possível a redução do tempo computacional em pelo menos 40% com relação a uma abordagem puramente cinética. Cabe ressaltar ainda que o modelo HAZ possibilitou um maior entendimento físico e químico ao identificar os processos dominantes locais. / Gasification is a thermochemical conversion process consisting of partial oxidation of a fuel to convert it to a gas mixture (“syngas”). Generally, the gasification process modeling uses a kinetic detailed description, or approach it to a chemical equilibrium state. Both approaches have advantages and disadvantages, as well as limitations. The objective of this work was to develop a new phenomenological modeling of gasification processes through a “hybrid” model here called hybrid adaptive zone model (HAZ). This proposed modeling assumed the gasifier is represented by two types of zones: one dominated by chemical kinetics, represented by a kinetic model, and another where chemical kinetics is fast so chemical species are assumed in chemical equilibrium states, represented by an equilibrium model. A transition criterion between zones was defined by a Damköhler number (Da) which relates residence time and chemical reaction time. Therefore, the HAZ model can adapted according to the dominant processes in each zone. Firstly, a multi-phase equilibrium model (ME) was developed and applied to study the coal-biomass co-gasification of Brazilian sources. Hereafter, the HAZ model was built using the technique of equivalent reactor network (ERN) with the ME model and a kinetic model developed in this work. A methodology of use of the HAZ model was proposed, applied and validated for two configurations of gasifiers: two cases of biomass bubbling fluidized-bed gasifiers and one case of coal entrained-flow gasifier. In the first two cases the transition was estimated to occur on Da ≥ 10+5 and in the last case; we estimated on Da ≥ 10+3. The application of the HAZ model proved to be satisfactory since it could reduce the computation time by at least 40% compared to a pure kinetic approach. It should already be emphasized that the HAZ model allowed a better physical and chemical understanding of gasification by identifying the dominant local processes.
3

Modelagem cinética e de equilíbrio combinadas para simulação de processos de gaseificação

Rodrigues, Rodolfo January 2015 (has links)
A gaseificação é um processo de conversão termoquímica que compreende a oxidação parcial de um combustível para convertê-lo em uma mistura gasosa (“syngas”). Geralmente a modelagem desses processos utiliza uma descrição cinética detalhada ou os aproximam ao equilíbrio químico. Ambas as abordagens têm vantagens e desvantagens, bem como limitações. O objetivo deste trabalho foi o desenvolvimento de uma nova modelagem fenomenológica de processos de gaseificação através de um modelo “híbrido” aqui chamado de modelo híbrido adaptativo por zonas (HAZ). Este modelo assumiu que o gaseificador é representado por zonas de dois tipos: uma dominada pela cinética química, representada por um modelo cinético, e outra onde a cinética química é rápida e as espécies químicas estão em equilíbrio químico, representada por um modelo de equilíbrio. Um critério de transição entre as zonas foi proposto através de um número de Damköhler (Da) que relaciona tempos de residência e de reação química. Desta forma, o modelo adapta-se conforme os processos dominantes em cada zona. Em um primeiro momento, um modelo de equilíbrio multifásico (EM) foi desenvolvido e aplicado para um estudo da cogaseificação de carvão mineral e biomassas disponíveis no Brasil. A seguir, o modelo HAZ foi construído através da técnica de rede equivalente de reatores químicos (ERN) a partir do modelo EM e de um modelo cinético, também desenvolvido neste trabalho. Uma metodologia de aplicação do modelo HAZ foi proposta, aplicada e validada para duas configurações de gaseificadores: dois casos de gaseificadores de biomassa em leito fluidizado borbulhante e um caso de gaseificador de carvão mineral em leito de arraste. Para os dois primeiros casos foi estimada que a transição ocorra para Da ≥ 10+5 e para o último caso; chegou-se a Da ≥ 10+3. A aplicação do modelo HAZ se mostrou satisfatória sendo que foi possível a redução do tempo computacional em pelo menos 40% com relação a uma abordagem puramente cinética. Cabe ressaltar ainda que o modelo HAZ possibilitou um maior entendimento físico e químico ao identificar os processos dominantes locais. / Gasification is a thermochemical conversion process consisting of partial oxidation of a fuel to convert it to a gas mixture (“syngas”). Generally, the gasification process modeling uses a kinetic detailed description, or approach it to a chemical equilibrium state. Both approaches have advantages and disadvantages, as well as limitations. The objective of this work was to develop a new phenomenological modeling of gasification processes through a “hybrid” model here called hybrid adaptive zone model (HAZ). This proposed modeling assumed the gasifier is represented by two types of zones: one dominated by chemical kinetics, represented by a kinetic model, and another where chemical kinetics is fast so chemical species are assumed in chemical equilibrium states, represented by an equilibrium model. A transition criterion between zones was defined by a Damköhler number (Da) which relates residence time and chemical reaction time. Therefore, the HAZ model can adapted according to the dominant processes in each zone. Firstly, a multi-phase equilibrium model (ME) was developed and applied to study the coal-biomass co-gasification of Brazilian sources. Hereafter, the HAZ model was built using the technique of equivalent reactor network (ERN) with the ME model and a kinetic model developed in this work. A methodology of use of the HAZ model was proposed, applied and validated for two configurations of gasifiers: two cases of biomass bubbling fluidized-bed gasifiers and one case of coal entrained-flow gasifier. In the first two cases the transition was estimated to occur on Da ≥ 10+5 and in the last case; we estimated on Da ≥ 10+3. The application of the HAZ model proved to be satisfactory since it could reduce the computation time by at least 40% compared to a pure kinetic approach. It should already be emphasized that the HAZ model allowed a better physical and chemical understanding of gasification by identifying the dominant local processes.
4

Modélisation chimique détaillée de la combustion de la biomasse dans les appareils de chauffage domestique en vue de réduire leurs émissions polluantes / Detailed chemical modeling of biomass combustion in domestic heating appliances in order to reduce their polluting emissions

Dhahak, Amal 28 March 2019 (has links)
Cette thèse vise à comprendre et à modéliser les mécanismes chimiques de combustion de la biomasse dans les appareils de chauffage domestiques afin de réduire les émissions polluantes. Dans ce but, un modèle global de combustion a été développé. Ce modèle considère à la fois une cinétique chimique détaillée et le transfert thermique. La première partie de ce travail a consisté à développer un modèle cinétique permettant de représenter la dévolatilisation de la biomasse ainsi que les réactions secondaires de combustion en phase gazeuse des espèces émises au cours de la pyrolyse primaire. Selon le modèle cinétique de pyrolyse utilisé, la biomasse est caractérisée comme étant un mélange de trois constituants dits de référence : la cellulose, l’hémicellulose et la lignine. Pour connaître les limitations du modèle étudié, il a été testé sur plusieurs cas de pyrolyse primaire. Un modèle de pyrolyse secondaire et de combustion a été ajouté au modèle représentant la pyrolyse primaire. Ce modèle secondaire est composé de mécanismes d'oxydation pour les produits formés par la pyrolyse, comme l’hydroxyacétaldéhyde, le furane et ses dérivés, l’anisole, le furfural, le gaïacol… Ce modèle secondaire, ainsi que le nouveau modèle global développé, BioPOx (Biomass Pyrolysis and Oxidation), ont été testés sur un grand nombre de points expérimentaux. Dans une seconde partie, le modèle cinétique considérant à la fois la pyrolyse primaire et le craquage thermique des espèces gazeuses émises, est couplé à un modèle de transfert de chaleur simplifié afin de modéliser la combustion d’une bûche de bois dans un poêle représenté par un réseau de réacteurs chimiques idéaux. Le modèle global, couplant les parties cinétique et thermique, permet de reproduire des résultats expérimentaux sur des émissions gazeuses (CO, CO2, NO) obtenues dans un poêle à bois. / This thesis aims to understand and model the chemical mechanisms of biomass combustion in domestic heating appliances to reduce polluting emissions. For this purpose, a global model of combustion has been developed. This model considers both detailed chemical kinetics and heat transfer. The first part of this work consisted of developing a kinetic model to represent the devolatilization of biomass as well as the secondary gas phase combustion reactions of the species emitted during primary pyrolysis. According to the used kinetic model of pyrolysis, the biomass is characterized as a mixture of three so-called reference constituents: cellulose, hemicellulose and lignin. To know the limitations of the studied model, it has been tested on several cases of primary pyrolysis. A model of secondary pyrolysis and combustion was added to the model representing primary pyrolysis. This secondary model is composed of oxidation mechanisms for products formed by pyrolysis, such as hydroxyacetaldehyde, furan and its derivatives, furfural, anisole, guaiacol ... This secondary model, as well as the new global model developed BioPOx (Biomass Pyrolysis and Oxidation) have been tested on a large number of experimental results. In a second part, the kinetic model considering both the primary pyrolysis and the thermal cracking of the emitted gaseous species, is coupled to a simplified model of heat transfer to model the combustion of a log of wood in a stove represented by a network of ideal chemical reactors. The global model, coupling the kinetic and thermal parts, reproduces experimental results on gaseous emissions (CO, CO2, NO) obtained in a wood stove.

Page generated in 0.098 seconds