1 |
Anatomy of smooth integersMehdizadeh, Marzieh 07 1900 (has links)
Dans le premier chapitre de cette thèse, nous passons en revue les outils de la théorie analytique
des nombres qui seront utiles pour la suite. Nous faisons aussi un survol des entiers
y−friables, c’est-à-dire des entiers dont chaque facteur premier est plus petit ou égal à y.
Au deuxième chapitre, nous présenterons des problèmes classiques de la théorie des nombres
probabiliste et donnerons un bref historique d’une classe de fonctions arithmétiques sur un
espace probabilisé.
Le problème de Erdos sur la table de multiplication demande quel est le nombre d’entiers
distincts apparaissant dans la table de multiplication N × N. L’ordre de grandeur de cette
quantité a été déterminé par Kevin Ford (2008). Dans le chapitre 3 de cette thèse, nous
étudions le nombre d’ensembles y−friables de la table de multiplication N × N. Plus concrètement,
nous nous concentrons sur le changement du comportement de la fonction A(x, y)
par rapport au domaine de y, où A(x, y) est une fonction qui compte le nombre d’entiers
y− friables distincts et inférieurs à x qui peuvent être représentés comme le produit de deux
entiers y− friables inférieurs à p
x.
Dans le quatrième chapitre, nous prouvons un théorème de Erdos-Kac modifié pour l’ensemble
des entiers y− friables. Si !(n) est le nombre de facteurs premiers distincts de n, nous prouvons
que la distribution de !(n) est gaussienne pour un certain domaine de y en utilisant la
méthode des moments. / The object of the first chapter of this thesis is to review the materials and tools in analytic
number theory which are used in following chapters. We also give a survey on the development
concerning the number of y−smooth integers, which are integers free of prime factors
greater than y.
In the second chapter, we shall give a brief history about a class of arithmetical functions
on a probability space and we discuss on some well-known problems in probabilistic number
theory.
We present two results in analytic and probabilistic number theory.
The Erdos multiplication table problem asks what is the number of distinct integers appearing
in the N × N multiplication table. The order of magnitude of this quantity was determined
by Kevin Ford (2008). In chapter 3 of this thesis, we study the number of y−smooth entries
of the N × N multiplication. More concretely, we focus on the change of behaviour of the
function A(x,y) in different ranges of y, where A(x,y) is a function that counts the number
of distinct y−smooth integers less than x which can be represented as the product of two
y−smooth integers less than p
x.
In Chapter 4, we prove an Erdos-Kac type of theorem for the set of y−smooth integers. If
!(n) is the number of distinct prime factors of n, we prove that the distribution of !(n) is
Gaussian for a certain range of y using method of moments.
|
2 |
On the distribution of polynomials having a given number of irreducible factors over finite fieldsDatta, Arghya 08 1900 (has links)
Soit q ⩾ 2 une puissance première fixe. L’objectif principal de cette thèse est d’étudier le comportement
asymptotique de la fonction arithmétique Π_q(n,k) comptant le nombre de polynômes
moniques de degré n et ayant exactement k facteurs irréductibles (avec multiplicité) sur le corps
fini F_q. Warlimont et Car ont montré que l’objet Π_q(n,k) est approximativement distribué de
Poisson lorsque 1 ⩽ k ⩽ A log n pour une constante A > 0. Plus tard, Hwang a étudié la
fonction Π_q(n,k) pour la gamme complète 1 ⩽ k ⩽ n. Nous allons d’abord démontrer une formule
asymptotique pour Π_q(n,k) en utilisant une technique analytique classique développée
par Sathe et Selberg. Nous reproduirons ensuite une version simplifiée du résultat de Hwang
en utilisant la formule de Sathe-Selberg dans le champ des fonctions. Nous comparons également
nos résultats avec ceux analogues existants dans le cas des entiers, où l’on étudie tous les
nombres naturels jusqu’à x avec exactement k facteurs premiers. En particulier, nous montrons
que le nombre de polynômes moniques croît à un taux étonnamment plus élevé lorsque k est un
peu plus grand que logn que ce que l’on pourrait supposer en examinant le cas des entiers.
Pour présenter le travail ci-dessus, nous commençons d’abord par la théorie analytique des
nombres de base dans le contexte des polynômes. Nous introduisons ensuite les fonctions arithmétiques
clés qui jouent un rôle majeur dans notre thèse et discutons brièvement des résultats
bien connus concernant leur distribution d’un point de vue probabiliste. Enfin, pour comprendre
les résultats clés, nous donnons une discussion assez détaillée sur l’analogue de champ de fonction
de la formule de Sathe-Selberg, un outil récemment développé par Porrit et utilisons ensuite
cet outil pour prouver les résultats revendiqués. / Let q ⩾ 2 be a fixed prime power. The main objective of this thesis is to study the asymptotic
behaviour of the arithmetic function Π_q(n,k) counting the number of monic polynomials that
are of degree n and have exactly k irreducible factors (with multiplicity) over the finite field
F_q. Warlimont and Car showed that the object Π_q(n,k) is approximately Poisson distributed
when 1 ⩽ k ⩽ A log n for some constant A > 0. Later Hwang studied the function Π_q(n,k) for the
full range 1 ⩽ k ⩽ n. We will first prove an asymptotic formula for Π_q(n,k) using a classical
analytic technique developed by Sathe and Selberg. We will then reproduce a simplified version
of Hwang’s result using the Sathe-Selberg formula in the function field. We also compare our
results with the analogous existing ones in the integer case, where one studies all the natural
numbers up to x with exactly k prime factors. In particular, we show that the number of monic
polynomials grows at a surprisingly higher rate when k is a little larger than logn than what one
would speculate from looking at the integer case. To present the above work, we first start with basic analytic number theory in the context of polynomials. We then introduce the key arithmetic functions that play a major role in our thesis and briefly discuss well-known results concerning their distribution from a probabilistic
point of view. Finally, to understand the key results, we give a fairly detailed discussion on the
function field analogue of the Sathe-Selberg formula, a tool recently developed by Porrit and
subsequently use this tool to prove the claimed results.
|
Page generated in 0.0418 seconds