Spelling suggestions: "subject:"ergodic theory"" "subject:"crgodic theory""
51 |
Nonlinear model evaluation : ɩ-shadowing, probabilistic prediction and weather forecastingGilmour, Isla January 1999 (has links)
Physical processes are often modelled using nonlinear dynamical systems. If such models are relevant then they should be capable of demonstrating behaviour observed in the physical process. In this thesis a new measure of model optimality is introduced: the distribution of ɩ-shadowing times defines the durations over which there exists a model trajectory consistent with the observations. By recognising the uncertainty present in every observation, including the initial condition, ɩ-shadowing distinguishes model sensitivity from model error; a perfect model will always be accepted as optimal. The traditional root mean square measure may confuse sensitivity and error, and rank an imperfect model over a perfect one. In a perfect model scenario a good variational assimilation technique will yield an ɩ-shadowing trajectory but this is not the case given an imperfect model; the inability of the model to ɩ-shadow provides information on model error, facilitating the definition of an alternative assimilation technique and enabling model improvement. While the ɩ-shadowing time of a model defines a limit of predictability, it does not validate the model as a predictor. Ensemble forecasting provides the preferred approach for evaluating the uncertainty in predictions, yet questions remain as to how best to construct ensembles. The formation of ensembles is contrasted in perfect and imperfect model scenarios in systems ranging from the analytically tractable to the Earth's atmosphere, thereby addressing the question of whether the apparent simplicity often observed in very high-dimensional weather models fails `even in or only in' low-dimensional chaotic systems. Simple tests of the consistency between constrained ensembles and their methods of formulation are proposed and illustrated. Specifically, the commonly held belief that initial uncertainties in the state of the atmosphere of realistic amplitude behave linearly for two days is tested in operational numerical weather prediction models and found wanting: nonlinear effects are often important on time scales of 24 hours. Through the kind consideration of the European Centre for Medium-range Weather Forecasting, the modifications suggested by this are tested in an operational model.
|
52 |
Medidas que maximizam a entropia no Deslocamento de HaydnFigueiredo, Fernanda Ronssani de January 2015 (has links)
Neste trabalho é abordado o exemplo proposto por Nicolai Haydn, no qual é dado um exemplo de um deslocamento onde é possível construir in nitas medidas de máxima entropia, além de in nitos estados de equilíbrio. / In this work, we present the example shown by Nicolai Haydn, which is given by subshift where is possible to show in nity measures of maximal entropy, besides in nitely many distinct equilibrium states.
|
53 |
Medidas que maximizam a entropia no Deslocamento de HaydnFigueiredo, Fernanda Ronssani de January 2015 (has links)
Neste trabalho é abordado o exemplo proposto por Nicolai Haydn, no qual é dado um exemplo de um deslocamento onde é possível construir in nitas medidas de máxima entropia, além de in nitos estados de equilíbrio. / In this work, we present the example shown by Nicolai Haydn, which is given by subshift where is possible to show in nity measures of maximal entropy, besides in nitely many distinct equilibrium states.
|
54 |
Medidas que maximizam a entropia no Deslocamento de HaydnFigueiredo, Fernanda Ronssani de January 2015 (has links)
Neste trabalho é abordado o exemplo proposto por Nicolai Haydn, no qual é dado um exemplo de um deslocamento onde é possível construir in nitas medidas de máxima entropia, além de in nitos estados de equilíbrio. / In this work, we present the example shown by Nicolai Haydn, which is given by subshift where is possible to show in nity measures of maximal entropy, besides in nitely many distinct equilibrium states.
|
55 |
Certain results on the Möbius disjointness conjectureKaragulyan, Davit January 2017 (has links)
We study certain aspects of the Möbius randomness principle and more specifically the Möbius disjointness conjecture of P. Sarnak. In paper A we establish this conjecture for all orientation preserving circle homeomorphisms and continuous interval maps of zero entropy. In paper B we show, that for all subshifts of finite type with positive topological entropy the Möbius disjointness does not hold. In paper C we study a class of three-interval exchange maps arising from a paper of Bourgain and estimate its Hausdorff dimension. In paper D we consider the Chowla and Sarnak conjectures and the Riemann hypothesis for abstract sequences and study their relationship. / <p>QC 20171016</p>
|
56 |
Ergodic properties of noncommutative dynamical systemsSnyman, Mathys Machiel January 2013 (has links)
In this dissertation we develop aspects of ergodic theory
for C*-dynamical systems for which the C*-algebras are allowed
to be noncommutative. We define four ergodic properties,
with analogues in classic ergodic theory, and study C*-dynamical
systems possessing these properties. Our analysis will show that, as
in the classical case, only certain combinations of these properties
are permissable on C*-dynamical systems. In the second half of
this work, we construct concrete noncommutative C*-dynamical
systems having various permissable combinations of the ergodic
properties. This shows that, as in classical ergodic theory, these
ergodic properties continue to be meaningful in the noncommutative
case, and can be useful to classify and analyse C*-dynamical
systems. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Mathematics and Applied Mathematics / unrestricted
|
57 |
Metric Methods in Ergodic TheoryAvelin, Erik January 2023 (has links)
This bachelor's thesis discusses from an ergodic-theoretical perspective the "metric functional analysis" that Anders Karlsson and others have developed in the recent years. We introduce a new symbolic calculus for metric functionals which includes a notion of the adjoint of a nonexpansive map. Using these tools we revisit many central results, including Karlsson's spectral principle and its stronger form for star-shaped spaces due to Gaubert and Vigeral, as well as the multiplicative ergodic theorem of Karlsson-Ledrappier.
|
58 |
The Linear Dynamics of Several Commuting OperatorsNasca, Angelo J., III 15 May 2015 (has links)
No description available.
|
59 |
Some results on recurrence and entropyPavlov, Ronald L., Jr. 22 June 2007 (has links)
No description available.
|
60 |
Convergence of Averages in Ergodic TheoryButkevich, Sergey G. 11 October 2001 (has links)
No description available.
|
Page generated in 0.0917 seconds