Spelling suggestions: "subject:"ergodicidade, broder, unidimensional"" "subject:"ergodicidade, broder, unidimensionals""
1 |
Ergodicidade de um eroder unidimensional com ruído aleatórioNunes de Souza Pereira, Renata January 2005 (has links)
Made available in DSpace on 2014-06-12T18:05:21Z (GMT). No. of bitstreams: 2
arquivo7243_1.pdf: 309008 bytes, checksum: 517c3b37b443a53bc283474af920a6cf (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / Estudamos a ergodicidade da seguinte classe de autômatos celulares. O espaço configuracional é o das seqüências em A = {0,1,...,m} com índices inteiros. Cada elemento x deste espaço é chamado uma configuração. Consideramos uma classe de operadores determinísticos D dependendo de um número natural r (o raio de interação) e uma função monótona f assumindo valores em A e cujo domínio é o conjunto das (2r+1)-uplas ordenadas de elementos de A. Uma configuração x é chamada uma ilha se o conjunto onde x não se anula é finito. D é chamado conservativo se existe uma ilha x tal que para todo t natural o resultado de t aplicações de D à ilha x contém pelo menos uma componente igual a m . Dizemos que D eroda uma ilha y se existir um t natural tal que o resultado de t aplicações de D a y é a configuração nula. Chamamos D de erosivo se todas as ilhas são erodadas por ele. Também consideramos um operador aleatório S dependendo de um parâmetro p em (0,1) que transforma cada componente em m, independentemente das outras componentes. Foi provado por Toom que no caso m = 1 as seguintes três condições são equivalentes: (i) D é conservativo; (ii) D não é erosivo; (iii) a composição S D é ergódica para todo p em (0,1). Provamos neste trabalho que no caso m = 2 cada duas destas três condiições não são equivalentes
|
Page generated in 0.0842 seconds