Spelling suggestions: "subject:"ericksen's rar"" "subject:"ericksen's aar""
1 |
Structures spatiales déployables constituées de mètres rubans : analyse et implémentation de modèles de poutre à section flexible / Deployable space structures made up of tape springs : analysis and implementation of rod models with flexible cross-sectionMartin, Maverick 08 December 2017 (has links)
Les mètres rubans sont utilisés comme dispositif de déploiement car ils sont légers, compacts, se déploient de manière autonome et ont une capacité d'auto-blocage en position déployée. Ces structures élancées de forme cylindrique présentent un comportement complexe avec formation de plis localisés. Leur modélisation est donc difficile : bien que des modèles de poutre à section flexible (RFleXS) aient été développés. Les travaux réalisés consistent à développer des outils numériques d'aide au dimensionnement de structures déployées par des rubans. Un modèle RFleXS adimensionné dédié aux rubans peu profonds est introduit et analysé, mettant en évidence des liens avec le modèle de barre d'Ericksen régularisé. Ces liens expliquent la formation de plis et caractérisent les trois zones constitutives d'un pli. On détermine de façon analytique le nombre et la position des points de bifurcation des branches de solution obtenues pour un essai de flexion pure d'un ruban. Un enrichissement de la cinématique de section est intégré dans les modèles RFleXS. Les simulations de flexion de ruban montrent alors une bonne corrélation avec les modèles de coque. Une nouvelle formulation des modèles RFleXS est implémentée et conduisant au développement de deux outils numériques : un code de calcul par éléments finis complet et un élément à deux noeuds intégré dans un code commercial. Des essais de flexion réalisés sur des rubans composites viennent compléter ces travaux afin de confronter les simulations numériques à des essais réels. Bien que des écarts soient observés, le comportement global du ruban est bien retranscrit par les modèles de poutre à section flexible. / Due to their lightness, compactness, their autonomous deployment and their ability to self-locking while deployed, tape-springs are considered to deploy structures. These slender and cylindrical structures highlight a complex behaviour because of the formation of localised folds. Tape-springs are then difficult to model but a rod model with flexible cross-section (RFleXS) has been developed in order to characterise the tape-spring behaviour.The purpose of this PhD was to develop numerical tools dedicated to design structures deployed by tape-spings. A dimensionless form of the RFleXS model dedicated to shallow tape spring has been developed and links with a regularised Ericksen's bar have been made. These links help to explain folds creation and to determine characteristics of the three constitutive areas of a fold. Analysis of the dimensionless model leads to determine the finite number and the position of bifurcation points for the pure bending of a tape-spring. The cross-section kinematic is enriched; simulations of bending tests then show a good correlation with shell models. A new implementation of RFleXS models is introduced, leading to the creation of two numerical tools: a full finite element software and a one-dimensional element with two nodes incorporated in Abaqus. Some bending experiments have been performed in order to compare simulations with measured data. Even if discrepancies are observed, these comparisons show that the tape-spring overall behaviour is well predicted by rod models with flexible cross-section.
|
2 |
A Numerical Investigation Of The Canonical Duality Method For Non-Convex Variational ProblemsYu, Haofeng 07 October 2011 (has links)
This thesis represents a theoretical and numerical investigation of the canonical duality theory, which has been recently proposed as an alternative to the classic and direct methods for non-convex variational problems. These non-convex variational problems arise in a wide range of scientific and engineering applications, such as phase transitions, post-buckling of large deformed beam models, nonlinear field theory, and superconductivity. The numerical discretization of these non-convex variational problems leads to global minimization problems in a finite dimensional space.
The primary goal of this thesis is to apply the newly developed canonical duality theory to two non-convex variational problems: a modified version of Ericksen's bar and a problem of Landau-Ginzburg type. The canonical duality theory is investigated numerically and compared with classic methods of numerical nature. Both advantages and shortcomings of the canonical duality theory are discussed. A major component of this critical numerical investigation is a careful sensitivity study of the various approaches with respect to changes in parameters, boundary conditions and initial conditions. / Ph. D.
|
Page generated in 0.057 seconds