Spelling suggestions: "subject:"error correction coding"" "subject:"error correction boding""
11 |
Network coding for multihop wireless networks : joint random linear network coding and forward error correction with interleaving for multihop wireless networksSusanto, Misfa January 2015 (has links)
Optimising the throughput performance for wireless networks is one of the challenging tasks in the objectives of communication engineering, since wireless channels are prone to errors due to path losses, random noise, and fading phenomena. The transmission errors will be worse in a multihop scenario due to its accumulative effects. Network Coding (NC) is an elegant technique to improve the throughput performance of a communication network. There is the fact that the bit error rates over one modulation symbol of 16- and higher order- Quadrature Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered Random Network Coding (SRNC) system was proposed in the literature to exploit the error pattern of 16-QAM by using bit-scattering to improve the throughput of multihop network to which is being applied the Random Linear Network Coding (RLNC). This thesis aims to improve further the SRNC system by using Forward Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC with interleaving. The first proposed system (System-I) uses Convolutional Code (CC) FEC. The performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and 1/8 was carried out using the developed simulation tools in MATLAB and compared to two benchmark systems: SRNC system (System-II) and RLNC system (System- III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC code. Performance evaluation of System IV was carried out and compared to three systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were carried out over three possible channel environments: 1) AWGN channel, 2) a Rayleigh fading channel, and 3) a Rician fading channel, where both fading channels are in series with the AWGN channel. The simulation results show that the proposed system improves the SRNC system. How much improvement gain can be achieved depends on the FEC type used and the channel environment.
|
12 |
Network Coding for Multihop Wireless Networks: Joint Random Linear Network Coding and Forward Error Correction with Interleaving for Multihop Wireless NetworksSusanto, Misfa January 2015 (has links)
Optimising the throughput performance for wireless networks is one of the
challenging tasks in the objectives of communication engineering, since wireless
channels are prone to errors due to path losses, random noise, and fading
phenomena. The transmission errors will be worse in a multihop scenario due to its
accumulative effects. Network Coding (NC) is an elegant technique to improve the
throughput performance of a communication network. There is the fact that the bit
error rates over one modulation symbol of 16- and higher order- Quadrature
Amplitude Modulation (QAM) scheme follow a certain pattern. The Scattered
Random Network Coding (SRNC) system was proposed in the literature to exploit
the error pattern of 16-QAM by using bit-scattering to improve the throughput of
multihop network to which is being applied the Random Linear Network Coding
(RLNC). This thesis aims to improve further the SRNC system by using Forward
Error Correction (FEC) code; the proposed system is called Joint RLNC and FEC
with interleaving.
The first proposed system (System-I) uses Convolutional Code (CC) FEC. The
performances analysis of System-I with various CC rates of 1/2, 1/3, 1/4, 1/6, and
1/8 was carried out using the developed simulation tools in MATLAB and compared
to two benchmark systems: SRNC system (System-II) and RLNC system (System-
III). The second proposed system (System-IV) uses Reed-Solomon (RS) FEC
code. Performance evaluation of System IV was carried out and compared to three
systems; System-I with 1/2 CC rate, System-II, and System-III. All simulations were
carried out over three possible channel environments: 1) AWGN channel, 2) a
Rayleigh fading channel, and 3) a Rician fading channel, where both fading
channels are in series with the AWGN channel. The simulation results show that
the proposed system improves the SRNC system. How much improvement gain
can be achieved depends on the FEC type used and the channel environment. / Indonesian Government and the University of Bradford
|
13 |
Securing Wireless Communication via Information-Theoretic Approaches: Innovative Schemes and Code Design TechniquesShoushtari, Morteza 21 June 2023 (has links) (PDF)
Historically, wireless communication security solutions have heavily relied on computational methods, such as cryptographic algorithms implemented in the upper layers of the network stack. Although these methods have been effective, they may not always be sufficient to address all security threats. An alternative approach for achieving secure communication is the physical layer security approach, which utilizes the physical properties of the communication channel through appropriate coding and signal processing. The goal of this Ph.D. dissertation is to leverage the foundations of information-theoretic security to develop innovative and secure schemes, as well as code design techniques, that can enhance security and reliability in wireless communication networks. This dissertation includes three main phases of investigation. The first investigation analyzes the finite blocklength coding problem for the wiretap channel model which is equipped with the cache. The objective was to develop and analyze a new wiretap coding scheme that can be used for secure communication of sensitive data. Secondly, an investigation was conducted into information-theoretic security solutions for aeronautical mobile telemetry (AMT) systems. This included developing a secure coding technique for the integrated Network Enhanced Telemetry (iNET) communications system, as well as examining the potential of post-quantum cryptography approaches as future secrecy solutions for AMT systems. The investigation focused on exploring code-based techniques and evaluating their feasibility for implementation. Finally, the properties of nested linear codes in the wiretap channel model have been explored. Investigation in this phase began by exploring the duality relationship between equivocation matrices of nested linear codes and their corresponding dual codes. Then a new coding algorithm to construct the optimum nested linear secrecy codes has been invented. This coding algorithm leverages the aforementioned duality relationship by starting with the worst nested linear secrecy codes from the dual space. This approach enables us to derive the optimal nested linear secrecy code more efficiently and effectively than through a brute-force search for the best nested linear secrecy codes directly.
|
14 |
Modelling of Mobile Fading Channels with Fading Mitigation Techniques.Shang, Lei, lei.shang@ieee.org January 2006 (has links)
This thesis aims to contribute to the developments of wireless communication systems. The work generally consists of three parts: the first part is a discussion on general digital communication systems, the second part focuses on wireless channel modelling and fading mitigation techniques, and in the third part we discuss the possible application of advanced digital signal processing, especially time-frequency representation and blind source separation, to wireless communication systems. The first part considers general digital communication systems which will be incorporated in later parts. Today's wireless communication system is a subbranch of a general digital communication system that employs various techniques of A/D (Analog to Digital) conversion, source coding, error correction, coding, modulation, and synchronization, signal detection in noise, channel estimation, and equalization. We study and develop the digital communication algorithms to enhance the performance of wireless communication systems. In the Second Part we focus on wireless channel modelling and fading mitigation techniques. A modified Jakes' method is developed for Rayleigh fading channels. We investigate the level-crossing rate (LCR), the average duration of fades (ADF), the probability density function (PDF), the cumulative distribution function (CDF) and the autocorrelation functions (ACF) of this model. The simulated results are verified against the analytical Clarke's channel model. We also construct frequency-selective geometrical-based hyperbolically distributed scatterers (GBHDS) for a macro-cell mobile environment with the proper statistical characteristics. The modified Clarke's model and the GBHDS model may be readily expanded to a MIMO channel model thus we study the MIMO fading channel, specifically we model the MIMO channel in the angular domain. A detailed analysis of Gauss-Markov approximation of the fading channel is also given. Two fading mitigation techniques are investigated: Orthogonal Frequency Division Multiplexing (OFDM) and spatial diversity. In the Third Part, we devote ourselves to the exciting fields of Time-Frequency Analysis and Blind Source Separation and investigate the application of these powerful Digital Signal Processing (DSP) tools to improve the performance of wireless communication systems.
|
Page generated in 0.0994 seconds