• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aiding Human Discovery of Out-of-the-Moment Handwriting Recognition Errors

Stedman, Ryan January 2009 (has links)
Handwriting recognizers frequently misinterpret digital ink input, requiring human verification of recognizer output to identify and correct errors, before the output of the recognizer can be used with any confidence int its correctness. Technologies like Anoto pens can make this error discovery and correction task more difficult, because verification of recognizer output may occur many hours after data input, creating an ``out-of-the-moment'' verification scenario. This difficulty can increase the number of recognition errors missed by users in verification. To increase the accuracy of human verified recognizer output, methods of aiding users in the discovery of handwriting recognition errors need to be created. While this need has been recognized by the research community, no published work exists examining this problem. This thesis explores the problem of creating error discovery aids for handwriting recognition. Design possibilities for the creation of error discovery aids are explored, and concrete designs for error discovery aids are presented. Evaluations are performed on a set of these proposed discovery aids, showing that the visual proximity aid improves user performance in error discovery. Following the evaluation of the discovery aids proposed in this thesis, the one discovery aid that has been proposed in the literature, confidence highlighting, is explored in detail and its potential as a discovery aid is highlighted. A technique is then presented, complimentary to error discovery aids, to allow a system to monitor and respond to user performance in errors discovery. Finally, a set of implications are derived from the presented work for the design of verification interfaces for handwriting recognition.
2

Aiding Human Discovery of Out-of-the-Moment Handwriting Recognition Errors

Stedman, Ryan January 2009 (has links)
Handwriting recognizers frequently misinterpret digital ink input, requiring human verification of recognizer output to identify and correct errors, before the output of the recognizer can be used with any confidence int its correctness. Technologies like Anoto pens can make this error discovery and correction task more difficult, because verification of recognizer output may occur many hours after data input, creating an ``out-of-the-moment'' verification scenario. This difficulty can increase the number of recognition errors missed by users in verification. To increase the accuracy of human verified recognizer output, methods of aiding users in the discovery of handwriting recognition errors need to be created. While this need has been recognized by the research community, no published work exists examining this problem. This thesis explores the problem of creating error discovery aids for handwriting recognition. Design possibilities for the creation of error discovery aids are explored, and concrete designs for error discovery aids are presented. Evaluations are performed on a set of these proposed discovery aids, showing that the visual proximity aid improves user performance in error discovery. Following the evaluation of the discovery aids proposed in this thesis, the one discovery aid that has been proposed in the literature, confidence highlighting, is explored in detail and its potential as a discovery aid is highlighted. A technique is then presented, complimentary to error discovery aids, to allow a system to monitor and respond to user performance in errors discovery. Finally, a set of implications are derived from the presented work for the design of verification interfaces for handwriting recognition.

Page generated in 0.0535 seconds