• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uncertainty analysis of a particle tracking algorithm developed for super-resolution particle image velocimetry

Joseph, Sujith 11 August 2003 (has links)
Particle Image Velocimetry (PIV) is a powerful technique to measure the velocity at many points in a flow simultaneously by performing correlation analysis on images of particles being transported by the flow. These images are acquired by illuminating the flow with two light pulses so that each particle appears once on each image. <p> The spatial resolution is an important parameter of this measuring system since it determines its ability to resolve features of interest in the flow. The super-resolution technique maximises the spatial resolution by augmenting the PIV analysis with a second pass that identifies specific particles and measures the distance between them. <p> The accuracy of the procedure depends on both the success with which the proper pairings are identified and the accuracy with which their centre-to-centre distance can be measured. This study presents an analysis of both the systematic uncertainty and random uncertainty associated with this process. The uncertainty is analysed as a function of several key parameters that define the quality of the image. The uncertainty analysis is performed by preparing 4000 member ensembles of simulated images with specific setpoints of each parameter. <p> It is shown that the systematic uncertainty is negligible compared to the random uncertainty for all conditions tested. Also, the image contrast and the selection of a threshold for the particle search are the most critical parameters influencing both success rate and uncertainty. It is also shown that high image intensities still yield accurate results. The search radius used by the super-resolution algorithm is shown to be a critical parameter also. By increasing the search radius, the success rate can be increased although this is accompanied by an increase in random uncertainty.
2

Uncertainty analysis of a particle tracking algorithm developed for super-resolution particle image velocimetry

Joseph, Sujith 11 August 2003
Particle Image Velocimetry (PIV) is a powerful technique to measure the velocity at many points in a flow simultaneously by performing correlation analysis on images of particles being transported by the flow. These images are acquired by illuminating the flow with two light pulses so that each particle appears once on each image. <p> The spatial resolution is an important parameter of this measuring system since it determines its ability to resolve features of interest in the flow. The super-resolution technique maximises the spatial resolution by augmenting the PIV analysis with a second pass that identifies specific particles and measures the distance between them. <p> The accuracy of the procedure depends on both the success with which the proper pairings are identified and the accuracy with which their centre-to-centre distance can be measured. This study presents an analysis of both the systematic uncertainty and random uncertainty associated with this process. The uncertainty is analysed as a function of several key parameters that define the quality of the image. The uncertainty analysis is performed by preparing 4000 member ensembles of simulated images with specific setpoints of each parameter. <p> It is shown that the systematic uncertainty is negligible compared to the random uncertainty for all conditions tested. Also, the image contrast and the selection of a threshold for the particle search are the most critical parameters influencing both success rate and uncertainty. It is also shown that high image intensities still yield accurate results. The search radius used by the super-resolution algorithm is shown to be a critical parameter also. By increasing the search radius, the success rate can be increased although this is accompanied by an increase in random uncertainty.

Page generated in 0.0624 seconds