• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Role and expression of transferrin receptor 2 in erythropoiesis / Rôle et expression du récepteur de la transferrine de type 2 dans la lignée érythroïde

Vieillevoye, Maud 12 July 2013 (has links)
L’érythropoïèse est le processus de différentiation d’un progéniteur érythroïde multipotent en globules rouges. La différentiation érythroïde est essentiellement contrôlée par le récepteur à l’érythropoïétine (EPOR). Nous avons montré que le récepteur à la transferrine de type 2 (TFR2) est un membre important du complexe formé par l’EPOR. Le TFR2 présente, comme l’EPOR une expression restreinte qui dépend du type cellulaire. Ainsi son expression n’a pu être détectée que dans le foie, l’érythron et l’intestin grêle. Le rôle du TFR2 a été exploré dans les hépatocytes et il a été montré qu’il joue le rôle d’un senseur de fer dans cette lignée et de ce fait contribue à l’homéostasie du fer. Nous avons déterminé le rôle du TFR2 dans les érythroblastes et montré que TFR2 est une protéine escorte de l’EPOR qui contribue à l’érythropoïèse in vitro et in vivo. De plus, nos travaux montrent que le TFR2 est requis pour la production de GDF15 (Growth Differentiation Factor 15) dans les érythroblastes. D’autre part nous avons démontré que la production de GDF15 est augmentée par l’EPO, la déplétion intracellulaire en fer et l’activité transactivatrice de P53. L’inhibition de l’expression de P53, réalisée au cours de l’étude de son rôle dans la production de GDF15, a révélé son implication dans l’érythropoïèse normale. Nous avons mis en évidence l’existence de plusieurs formes du TFR2. Deux d’entre elles résultent de l’utilisation de sites distincts d’initiation de la traduction. Ces deux isoformes sont régulée différemment au cours de la maturation des érythroblastes. La troisième isoforme, appelée TFR2 soluble (sTFR2), est relargée dans le plasma suite au clivage du TFR2. Nous avons montré que la production du sTFR2 est inhibée en présence du ligand de TFR2, la transferrine saturée en fer (holoTF) alors que le TFR2 est stabilisé dans ces mêmes conditions. Les rôles spécifiques des trois formes du TFR2 doivent encore être élucidés. / Erythropoiesis is the differentiation process of a multipotent erythroid progenitor into red blood cells. Erythroid differentiation is primarily controlled by the erythropoietin receptor (EPOR). We showed that the Transferrin receptor 2 (TFR2) is an important member of the EPOR complex. TFR2 has like EPOR a lineage-restricted expression and can solely be detected in the liver, erythron and small intestine. TFR2 function has been explored in hepatocytes where it plays the role of an iron sensor and contributes to iron homeostasis. We determined the role of TFR2 in erythroblasts and showed that TFR2 is an escort protein for EPOR that contributes to optimal erythropoiesis in vitro and in vivo. Moreover we evidenced that TFR2 is absolutely required for the production of Growth differentiation factor 15 (GDF15) in erythroblasts. We further demonstrated that GDF15 production is increased by EPO levels, by intracellular iron depletion as well as by P53 trans-activation activity. The inhibition of P53 expression, realized for the study of its role in GDF15 production, revealed its implication in normal erythropoiesis. We evidenced that TFR2 is expressed under several forms, two of which result from the utilization of distinct translational initiation sites. These two isoforms are differently regulated during erythroid maturation. The third form called soluble TFR2 (sTFR2) is released in the plasma after TFR2 cleavage. We showed that sTFR2 production is inhibited in the presence of TFR2 ligand, iron loaded transferrin (holoTF) whereas cell surface TFR2 expression is stabilized by holoTF. The specific roles of the three forms of TFR2 expressed by erythroblasts remain to be elucidated.
12

Bases moléculaires du contrôle de l’équilibre entre autorenouvellement et différenciation / Molecular bases controlling the self-renewal/differentiation balance

Pous, Camila 03 September 2010 (has links)
L’autorenouvellement est une propriété fondatrice du concept de cellule souche. Cependant, malgré l’avancée des connaissances actuelles, les mécanismes moléculaires sous-jacents restent mal compris. Nous nous sommes donc intéressés à cette question, en étudiant l’équilibre entre autorenouvellement et différenciation dans des progéniteurs érythrocytaires primaires. D’une part, grâce à une étude combinant des approches pharmacologiques et de génétique fonctionnelle, nos résultats montrent que le contrôle de la synthèse cellulaire du cholestérol joue un rôle essentiel dans la régulation du basculement de l’autorenouvellement vers la différenciation. D’autre part, nous avons étudié la nature stochastique de l’expression génique au cours du passage de l’autorenouvellement vers la différenciation. En effet, contrairement au caractère déterministe initialement attribué à l’expression des gènes, les données accumulées au cours des dernières années démontrent que cette expression repose sur des processus stochastiques. Nous avons en particulier oeuvré à la conception et à la mise en place d’un dispositif permettant de suivre en temps réel l’expression génique dans des cellules individualisées, afin de pouvoir mesurer et évaluer cette stochasticité. Au final, l’ensemble de ces travaux participent à la compréhension des bases moléculaires de l’autorenouvellement et du contrôle des choix du devenir cellulaire. / Self-renewal is a key property of the stem cell concept. However, despite the recent advances in this field, the underlying molecular bases are not yet properly understood. We tackled this question by studying the balance between self-renewal and differentiation, in primary erythroid progenitors. Our work is twofold. First, by combining pharmacologic approaches and functional genetics, we have shown that the control of cellular cholesterol synthesis plays a central role in the regulation between self-renewal and differentiation. Second, we have studied the stochastic nature of gene expression along the transition from self-renewal to differentiation. Indeed, while gene expression was initially deemed to be deterministic, more and more data tend to show that it relies on stochastic processes. In particular, we participated to the design of an experimental method allowing to mesure gene expression in a single cell, in real-time. All in all, the work presented here brings new elements towards the understanding of molecular bases controlling self-renewal and cell fate choices.

Page generated in 0.0343 seconds