• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 4
  • Tagged with
  • 19
  • 19
  • 13
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A new sonic box formulation for oscillating swept thick wings in transonic flow.

Guilherme Augusto Vargas Cesar 00 December 2004 (has links)
The present work shows a mathematical model for unsteady linearized potential flow around thin wings having swept leading and trailing edges and over thick wings with swept and unswept leading edges. Doublet integrals are obtained for the three dimensional case. The wings are supposed to be describing small amplitude harmonic motions of pitch and plunge. Exact solutions for thin and thick wings oscillating on an unsteady potential sonic flow are presented and are compared with other works.
12

Análise paramétrica de variações de projeto em perfis transônicos.

Julio Cesar Corrêa Buzzi 17 December 2004 (has links)
No presente trabalho é realizada uma análise paramétrica de perfis transônicos, baseado-se em suas expectativas de distribuições de pressão para obterem-se as características de desempenho aerodinâmico. O método aqui utilizado consistiu no uso de um perfil transônico típico, com uma dada distribuição de pressão, e perfis derivados deste primeiro, sendo que cada um destes apresenta uma diferença específica na distribuição de pressão em relação aos perfis básicos. Analisando cada um destes perfis, e comparando-os com o perfil básico, foram obtidas as características de desempenho tais como: curvas de máximo c1 utilizável em alta velocidade, evolução do arrasto com a velocidade, e evolução do momento de arfagem com a velocidade, possibilitando identificar as influências das variações da distribuição de pressão nestas características. Foram também analisadas as alterações resultantes na geometria dos perfis e alguns parâmetros específicos da camada limite, quando necessários. As análises foram realizadas com o código MSES, que é um código de CFD utilizado no projeto e análise de perfis transônicos.
13

Nonlinear turbulent transonic flow phenomena influence on aeroelastic stability analysis.

Hugo Stefanio de Almeida 02 December 2010 (has links)
The present work is aimed at studying the influence of viscous effects in transonic aeroelastic analyses. To achieve this goal, a two-dimensional and viscous aeroelastic computational solver, for CAE analysis, is developed, which uses unstructured computational meshes and which is able to capture the main aeroelastic phenomena relevant in the transonic regime of flight. The aeroelastic system considered to test the present methodology is the classical typical section model. The system has two structural degrees of freedom. These are pitching and plunging, or heaving. The structural degrees of freedom can be treated within solver in a coupled manner or separately, in a loosely coupled fashion. The typical section model is an approximation to the treatment of a full wing, in which the airfoil at 75% of the semi-span is analyzed. The structural response is obtained by solving a set of a second order ordinary differential equations in time, with aerodynamic forcing. The coupling of the structural degrees of freedom occurs primarily through the aerodynamic forcing terms. The unsteady aerodynamic problem is treated through the numerical solution of the Reynolds-averaged Navier-Stokes equations. These equations are solved using a finite volume method for unstructured computational grids, which uses a second-order centered spatial discretization and a second order time marching scheme. Turbulence closure is achieved through the Spalart-Allmaras one-equation eddy viscosity turbulence model. A reduction of the computational time for the unsteady aerodynamic simulations is obtained through the implmentation of a few convergence acceleration methods, which include the use of a constant CFL number, implicit residual smoothing and unsteady multigrid methods. The aeroelastic problem is solved through the coupling of the aerodynamic and structural formulations. In the present case, the structural equations are cast in a modal formulation and the unsteady aerodynamic responses are represented by aerodynamic states obtained by rational interpolating polynomials. The complete system of equations is written in state space format in the Laplace domain. The aeroelastic stability condition can, then, be determined by standard eigenvalue analyses of the system dynamic matrix.
14

Comparação do arrasto de onda obtido com a metodologia ESDU com o obtido pelo BLWF

Marcelo Fernandes de Oliveira 17 March 2006 (has links)
Este trabalho tem como objetivo a comparação de metodologias normalmente empregadas pelas EMBRAER (Empresa Brasileira de Aeronáutica) na determinação do arrasto de onda de asas operando em regime transônico. Os métodos avaliados neste trabalho são métodos que, devido à sua boa precisão e rápida velocidade de processamentos, são bastante adequados para serem utilizados no desenvolvimento de uma aeronave, principalmente durante seu projeto preliminar. A parcela do arrasto de onda é bastante significativa para aeronaves voando com velocidade acima de Mach 0.6 e sua importância é cada vez maior à medida que sua velocidade aumenta. No entanto, devido ao grande número de configurações possíveis para a aeronave em fase inicial de concepção, torna-se bastante difícil e custoso a determinação do arrasto de onda através de cálculos computacionais complexos ou ensaios em túnel. Técnicas que permitam uma estimativa rápida, porém confiável, da importância deste tipo de arrasto devem então ser empregadas. A metodologia utilizada deve ser de fácil aplicação, de modo a se avaliar, em um curto espaço de tempo, diversas configurações possíveis e, deste modo, auxiliar na escolha da melhor configuração. Tendo isso em mente, neste trabalho foi analisada a metodologia descrita pelo ESDU, cuja formulação remete a resultados já consagrados na indústria aeronáutica e/ou baseados em procedimentos experimentais, e uma metodologia numérica, BLWF, que utiliza-se de malhas computacionais e do cálculo do escoamento potencial. Inicialmente será apresentada uma breve descrição dos tipos de arrasto que se fazem presentes durante o vôo, bem como a importância de cada uma dessas parcelas. Em seguida, com finalidade ilustrativa, serão apresentados os cálculos e a distribuição do arrasto total em uma aeronave teórica voando na faixa transônica. As descrições dos métodos empregados são apresentada nos capítulos 5 e 6, que é seguido por uma confrontação e análise dos resultados obtidos utilizando-se as duas metodologias apresentadas. Os resultados obtidos pelo ESDU, embora extremamente rápidos, apresentam boa precisão para cálculos preliminares. No entanto, para asas que utilizam perfis supercríticos, a metodologia ESDU tende a sub-avaliar a contribuição do arrasto de onda. O BLWF, por exigir um maior número de parâmetros de entrada e tempo de simulação, é recomendado para uma fase já mais avançada do projeto. Deve-se levam em consideração que, apesar de importante, o arrasto da aeronave não é o único fator relevante na escolha de uma determinada configuração. Parâmetros como qualidade de vôo e até mesmo custos de fabricação jamais devem ser negligenciados.
15

Aeroelasticidade computacional transônica em aerofólios com modelo estrutural não linear / Transonic computational aeroelasticity on airfoils with nonlinear structural model

Camilo, Elizangela 10 September 2007 (has links)
Aeroelasticidade não linear é uma área multidisciplinar e importante em engenharia aeronáutica e aeroespacial. Aeroelasticidade é o estudo do mecanismo de interação entre os esforços aerodinâmicos e dinâmico-estruturais. Os avanços nas técnicas de CFD se concentram nas aplicações de problemas aerodinâmicos cada vez mais complexos, como os fenômenos associados com a formação e movimento das ondas de choque em escoamentos transônicos e escoamentos separados. Com os desenvolvimentos dos códigos de CFD, o tratamento de problemas aeroelásticos por meio de abordagens computacionais é denominado aeroelasticidade computacional. O objetivo deste trabalho é apresentar uma análise dos efeitos não lineares em aeroelasticidade no domínio do tempo em regime transônico. A metodologia proposta pretende investigar os efeitos não lineares em aerofólios onde são consideradas as não linearidades estruturais e aerodinâmicas. Neste trabalho as não linearidades aerodinâmicas estão associadas à formação e ao passeio das ondas de choque. Nesta situação, verifica-se que a fronteira de ocorrência de flutter é degradada rapidamente na faixa de vôo transônico, onde este fenômeno é denominado de depressão transônica. Dois códigos de CFD foram considerados, ambos baseados na formulação de Euler. Para a solução do sistema aeroelástico no domínio do tempo é aplicado o método Runge-Kutta combinado com o código de CFD. Neste caso, o código de CFD não estacionário é construído em um contexto de malhas não estruturadas. Esta consiste da primeira análise aeroelástica através da metodologia de marcha no tempo utilizando este código de CFD. As respostas aeroelásticas se concentram particularmente para o aerofólio NACA0012 através da história no tempo e retrato de fase para investigar os efeitos típicos não lineares como oscilações em ciclos limite, assim como, são construídas as fronteiras de flutter. Para o cálculo direto da fronteira de flutter é utilizado o código da análise de bifurcação de Hopf, onde o modelo de CFD é baseado no contexto de malhas estruturadas. Em trabalhos anteriores com este código foram obtidas as fronteiras do flutter em perfis e asas simétricos com modelos estruturais lineares. Este trabalho apresenta a primeira análise deste código considerando o modelo estrutural não linear. As não linearidades estruturais concentradas mostraram ter um efeito significativo na resposta aeroelástica podendo ser observadas as oscilações em ciclos limite abaixo da fronteira de flutter. As metodologias de marcha no tempo e análise de bifurcação de Hopf foram comparadas e os resultados apresentaram boa concordância. Isto comprovou a confiabilidade das duas metodologias na análise dos efeitos não lineares em aeroelasticidade. As análises de marcha no tempo com o modelo estrutural não linear também foram realizadas após a ocorrência do flutter e sua influência nas oscilações em ciclos limite foram observadas. / Nonlinear aeroelasticity is a multidisciplinary field, that is important in aeronautics and aerospace engineering. Aeroelasticity can be defined as the science which studies the mutual interaction between aerodynamic and dynamic forces. Computational fluid dynamics (CFD) has matured to the point where it is being applied to complex problems in external aerodynamics, particulary for phenomena associated with shock motions or separation. These two observations have motivated the development of CFD-based aeroelastic simulation, a fiel now being called computational aeroelasticity. The nonlinearities in the aeroelastic analysis are divided into aerodynamic and structural ones. The aim of this work is concerned with an application of time domain analysis for aeroelastic problems in a transonic flow. The methodology here proposed is to present an investigation on the effects of nonlinearities on airfoil flutter where both aerodynamic and structural concentrated nonlinearities are considered. In this work the aerodynamic nonlinearity arises from the presence of shock waves in transonic flows. In this situation, the unsteady forces generated by motion of the shock wave have been shown to destabilize single degree-of-freedom airfoil pitching motion and affect the bending-torsional flutter by lowering the flutter speed at the so-called transonic dip phenomenon. Two CFD tools are employed in the present work and they are based on the Euler formulation. To solve the aeroelastic problem the Runge-Kutta method is applied combined with the CFD code. In this case, the unsteady CFD tool solves flows in the an unstructured computational domain discretisation. This CFD tool had never been used for time domain aeroelastic analysis before. The responses concerned particularly the NACA0012 airfoil by investigating flutter boundary and typical LCO nonlinear effects from phase plane. For direct flutter boundary calculation, Hopf bifurcation analysis is employed, where the CFD code is based on structured grids for computation domain discretisation. Previous work has demonstrated the scheme for both symmetric airfoil and wing with linear structural model. The current work presents the first investigations of the structural nonlinearities effects with the method. The concentrated nonlinearities show to have significant effects on the aeroelastic responses and to provide limit cycle oscillation (LCO) below the flutter speed. Time marching analysis is performed and compared with direct calculation of Hopf bifurcation points. The results agree well and these computational tools have shown to be powerful to analyse nonlinear effects in aeroelasticity. Post bifurcation behavior is analysed to show influence of nonlinear structural terms on LCO with the time marching solver.
16

Aeroelasticidade computacional transônica em aerofólios com modelo estrutural não linear / Transonic computational aeroelasticity on airfoils with nonlinear structural model

Elizangela Camilo 10 September 2007 (has links)
Aeroelasticidade não linear é uma área multidisciplinar e importante em engenharia aeronáutica e aeroespacial. Aeroelasticidade é o estudo do mecanismo de interação entre os esforços aerodinâmicos e dinâmico-estruturais. Os avanços nas técnicas de CFD se concentram nas aplicações de problemas aerodinâmicos cada vez mais complexos, como os fenômenos associados com a formação e movimento das ondas de choque em escoamentos transônicos e escoamentos separados. Com os desenvolvimentos dos códigos de CFD, o tratamento de problemas aeroelásticos por meio de abordagens computacionais é denominado aeroelasticidade computacional. O objetivo deste trabalho é apresentar uma análise dos efeitos não lineares em aeroelasticidade no domínio do tempo em regime transônico. A metodologia proposta pretende investigar os efeitos não lineares em aerofólios onde são consideradas as não linearidades estruturais e aerodinâmicas. Neste trabalho as não linearidades aerodinâmicas estão associadas à formação e ao passeio das ondas de choque. Nesta situação, verifica-se que a fronteira de ocorrência de flutter é degradada rapidamente na faixa de vôo transônico, onde este fenômeno é denominado de depressão transônica. Dois códigos de CFD foram considerados, ambos baseados na formulação de Euler. Para a solução do sistema aeroelástico no domínio do tempo é aplicado o método Runge-Kutta combinado com o código de CFD. Neste caso, o código de CFD não estacionário é construído em um contexto de malhas não estruturadas. Esta consiste da primeira análise aeroelástica através da metodologia de marcha no tempo utilizando este código de CFD. As respostas aeroelásticas se concentram particularmente para o aerofólio NACA0012 através da história no tempo e retrato de fase para investigar os efeitos típicos não lineares como oscilações em ciclos limite, assim como, são construídas as fronteiras de flutter. Para o cálculo direto da fronteira de flutter é utilizado o código da análise de bifurcação de Hopf, onde o modelo de CFD é baseado no contexto de malhas estruturadas. Em trabalhos anteriores com este código foram obtidas as fronteiras do flutter em perfis e asas simétricos com modelos estruturais lineares. Este trabalho apresenta a primeira análise deste código considerando o modelo estrutural não linear. As não linearidades estruturais concentradas mostraram ter um efeito significativo na resposta aeroelástica podendo ser observadas as oscilações em ciclos limite abaixo da fronteira de flutter. As metodologias de marcha no tempo e análise de bifurcação de Hopf foram comparadas e os resultados apresentaram boa concordância. Isto comprovou a confiabilidade das duas metodologias na análise dos efeitos não lineares em aeroelasticidade. As análises de marcha no tempo com o modelo estrutural não linear também foram realizadas após a ocorrência do flutter e sua influência nas oscilações em ciclos limite foram observadas. / Nonlinear aeroelasticity is a multidisciplinary field, that is important in aeronautics and aerospace engineering. Aeroelasticity can be defined as the science which studies the mutual interaction between aerodynamic and dynamic forces. Computational fluid dynamics (CFD) has matured to the point where it is being applied to complex problems in external aerodynamics, particulary for phenomena associated with shock motions or separation. These two observations have motivated the development of CFD-based aeroelastic simulation, a fiel now being called computational aeroelasticity. The nonlinearities in the aeroelastic analysis are divided into aerodynamic and structural ones. The aim of this work is concerned with an application of time domain analysis for aeroelastic problems in a transonic flow. The methodology here proposed is to present an investigation on the effects of nonlinearities on airfoil flutter where both aerodynamic and structural concentrated nonlinearities are considered. In this work the aerodynamic nonlinearity arises from the presence of shock waves in transonic flows. In this situation, the unsteady forces generated by motion of the shock wave have been shown to destabilize single degree-of-freedom airfoil pitching motion and affect the bending-torsional flutter by lowering the flutter speed at the so-called transonic dip phenomenon. Two CFD tools are employed in the present work and they are based on the Euler formulation. To solve the aeroelastic problem the Runge-Kutta method is applied combined with the CFD code. In this case, the unsteady CFD tool solves flows in the an unstructured computational domain discretisation. This CFD tool had never been used for time domain aeroelastic analysis before. The responses concerned particularly the NACA0012 airfoil by investigating flutter boundary and typical LCO nonlinear effects from phase plane. For direct flutter boundary calculation, Hopf bifurcation analysis is employed, where the CFD code is based on structured grids for computation domain discretisation. Previous work has demonstrated the scheme for both symmetric airfoil and wing with linear structural model. The current work presents the first investigations of the structural nonlinearities effects with the method. The concentrated nonlinearities show to have significant effects on the aeroelastic responses and to provide limit cycle oscillation (LCO) below the flutter speed. Time marching analysis is performed and compared with direct calculation of Hopf bifurcation points. The results agree well and these computational tools have shown to be powerful to analyse nonlinear effects in aeroelasticity. Post bifurcation behavior is analysed to show influence of nonlinear structural terms on LCO with the time marching solver.
17

Simulação numérica de escoamento sobre aerofólio usando modelo de turbulência de uma equação.

Marco Antonio Sampaio Ferraz de Souza 08 July 2009 (has links)
Simulações numéricas foram realizadas utilizando-se um código computacional desenvolvido para resolver o sistema de equações de Navier-Stokes com média de Reynolds que modela o escoamento compressível turbulento em torno de um aerofólio NACA 0012. Foram utilizadas malhas estruturadas tipo O geradas algebricamente e diversos refinamentos puderam ser feitos. O método de volumes finitos foi empregado para discretizar o sistema de equações diferenciais parciais e os esquemas explícitos de MacCormack e Jameson foram implementados. Termos de viscosidade artificial foram adicionados explicitamente através de um modelo não-linear. O modelo de turbulência de uma equação de Spalart e Allmaras foi implementado para resolver o problema de fechamento da turbulência. Inicialmente, a formulação de Euler foi usada e resultados para a distribuição de pressão e coeficientes aerodinâmicos foram obtidos para quatro casos de escoamentos transônicos não-viscosos sobre o aerofólio. As soluções foram comparadas com os resultados de outros métodos numéricos disponíveis na literatura. Em seguida, um dos casos foi utilizado para avaliar a influência dos parâmetros numéricos como a viscosidade artificial e o refinamento da malha. Outro caso foi utilizado para comparar os esquemas explícitos de MacCormack e Jameson. Por último, o modelo de turbulência de uma equação de Spalart e Allmaras foi utilizado para a formulação de Navier-Stokes e as soluções foram comparadas com os dados experimentais de Harris e outros resultados numéricos obtidos com o modelo de turbulência algébrico de Baldwin e Lomax.
18

Aeroelasticidade transônica de aerofólio com arqueamento variável / Transonic aeroelasticity of variable camber airfoil

Silva, Ticiano Monte Lucio da 17 June 2010 (has links)
Os recentes desenvolvimentos na tecnologia de sistema aeronáutico de geometria variável têm sido motivados principalmente pela necessidade de melhorar o desempenho de aeronaves. O conceito de Morphing Aircraft, por meio da variação da linha de arqueamento, representa uma alternativa para sistemas aeronáuticos mais eficientes. No entanto, para aeronaves de alto desempenho, projetos com estes novos conceitos podem gerar reações aeroelásticas adversas, o que representa uma questão importante e pode vir a limitar esses novos projetos. A compreensão adequada do comportamento aeroelástico devido à variação da linha de arqueamento, particularmente em regimes transônico, compreende uma questão importante. Este trabalho consiste num estudo preliminar das consequências aeroelásticas de um sistema aeronáutico de geometria variável. O objetivo desse trabalho é explorar as repostas aeroelásticas transônicas de um aerofólio com arqueamento variável no tempo. A metodologia para análise aeroelástica é baseada num modelo de seção típica. A integração no tempo do sistema aeroelástico é obtida pelo método de Runge-Kutta de quarta ordem. A representação do escoamento transônico não estacionário foi computada por um código CFD em um contexto de malhas não estruturadas com uma formulação dada pelas equações de Euler-2D. Esses resultados preliminares podem fornecer aos projetistas informações importantes sobre as respostas aeroelásticas de um sistema aeronáutico com variação da linha de arqueamento, permitindo estabelecer um quadro adequado para futuras investigações de controle aeroelástico de sistema aeronáutico de geometria variável. / Recent developments on aircraft variable geometry technologies have been mainly motivated by the need for improving the flight performance. The morphing wing concept, by means of variable camber, represents an alternative towards more efficient lifting surfaces. However, for higher performance aircraft, this technology may lead to designs that create unsteady loads, which may result in adverse aeroelastic responses, which represents an important and limiting issue. Proper understanding of the aeroelastic behavior, particularly in transonic flight regimes, due to variations in camber comprises an important matter. This work is a primary study of aeroelastic consequences of an real-time adaptive aircraft. The objective of this work is to investigate prescribed variations to airfoil camberline and their influence to the aeroelastic response in transonic flight regime. The methodology is based on computational simulations of typical section with unsteady transonic aerodynamics solved with a Computational Fluid Dynamics (CFD) code. The time integration of the aeroelastic system is obtained by Runge-Kutta fourth order. The unsteady transonic flow was computed by a CFD code based on the 2D-Euler equations with unstructured mesh. Prescribed camber variation of a symmetrical airfoil is transferred to the CFD mesh, and aeroelastic responses and loading is assessed. These preliminary results may provide the designers valuable information on the interaction between changes in camber during airfoil aeroelastic reactions, allowing establishing an adequate framework for further aeroelastic control investigations of morphing wings.
19

Aeroelasticidade transônica de aerofólio com arqueamento variável / Transonic aeroelasticity of variable camber airfoil

Ticiano Monte Lucio da Silva 17 June 2010 (has links)
Os recentes desenvolvimentos na tecnologia de sistema aeronáutico de geometria variável têm sido motivados principalmente pela necessidade de melhorar o desempenho de aeronaves. O conceito de Morphing Aircraft, por meio da variação da linha de arqueamento, representa uma alternativa para sistemas aeronáuticos mais eficientes. No entanto, para aeronaves de alto desempenho, projetos com estes novos conceitos podem gerar reações aeroelásticas adversas, o que representa uma questão importante e pode vir a limitar esses novos projetos. A compreensão adequada do comportamento aeroelástico devido à variação da linha de arqueamento, particularmente em regimes transônico, compreende uma questão importante. Este trabalho consiste num estudo preliminar das consequências aeroelásticas de um sistema aeronáutico de geometria variável. O objetivo desse trabalho é explorar as repostas aeroelásticas transônicas de um aerofólio com arqueamento variável no tempo. A metodologia para análise aeroelástica é baseada num modelo de seção típica. A integração no tempo do sistema aeroelástico é obtida pelo método de Runge-Kutta de quarta ordem. A representação do escoamento transônico não estacionário foi computada por um código CFD em um contexto de malhas não estruturadas com uma formulação dada pelas equações de Euler-2D. Esses resultados preliminares podem fornecer aos projetistas informações importantes sobre as respostas aeroelásticas de um sistema aeronáutico com variação da linha de arqueamento, permitindo estabelecer um quadro adequado para futuras investigações de controle aeroelástico de sistema aeronáutico de geometria variável. / Recent developments on aircraft variable geometry technologies have been mainly motivated by the need for improving the flight performance. The morphing wing concept, by means of variable camber, represents an alternative towards more efficient lifting surfaces. However, for higher performance aircraft, this technology may lead to designs that create unsteady loads, which may result in adverse aeroelastic responses, which represents an important and limiting issue. Proper understanding of the aeroelastic behavior, particularly in transonic flight regimes, due to variations in camber comprises an important matter. This work is a primary study of aeroelastic consequences of an real-time adaptive aircraft. The objective of this work is to investigate prescribed variations to airfoil camberline and their influence to the aeroelastic response in transonic flight regime. The methodology is based on computational simulations of typical section with unsteady transonic aerodynamics solved with a Computational Fluid Dynamics (CFD) code. The time integration of the aeroelastic system is obtained by Runge-Kutta fourth order. The unsteady transonic flow was computed by a CFD code based on the 2D-Euler equations with unstructured mesh. Prescribed camber variation of a symmetrical airfoil is transferred to the CFD mesh, and aeroelastic responses and loading is assessed. These preliminary results may provide the designers valuable information on the interaction between changes in camber during airfoil aeroelastic reactions, allowing establishing an adequate framework for further aeroelastic control investigations of morphing wings.

Page generated in 0.074 seconds