• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise matemática de soluções descontínuas de leis de conservação hiperbólicas e resoluções numéricas para a captura de ondas de choque em escoamentos multifásicos em meios porosos / Mathematical analysis of discontinuous solutions of hyperbolic conservation laws and numerical resolutions for capturing of shock waves in multiphase flows in porous media

Nelson Machado Barbosa 17 April 2014 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos. / The process of secondary oil recovery is commonly accomplished by injecting water or gas into the reservoir to maintain the necessary pressure for their extraction. So that the investment is viable spending extraction must be smaller than the financial return to oil production. Aiming to study possible scenarios for the exploration process, it is customary to use simulations of extraction processes. The equations that model this process of recovery are hyperbolic and nonlinear, which can be interpreted as Conservation Laws , whose solutions are complex by their discontinuous nature . These discontinuities or jumps are known as shock waves. Due to this importance, this work will be discussed a mathematical analysis of the phenomena arising from conservation laws, to then use it in the understanding of this problem. Weak solutions that physically can be interpreted as shock waves or rarefaction, so that they might be distinguished physically admissible were studied, was considered the principle of entropy, in its various forms. The simulations were performed in the fields of two-phase and three-phase flow, in which the fluids are immiscible and gravitational and diffusive effects due to capillary pressure, were discarded. Initially a comparative study of numerical resolutions in the capture of shock waves in water-oil two-phase flow was made. This study highlights LWLF k Composite method and Nonstandard. Was also presented a new renormalization function for nonstandard scheme with satisfactory results, especially in regions where the oil viscosity is much higher than the viscosity of the water. In twodimensional flow, a new method will be presented. The same is a generalization of onedimensional nonstandard schema. Finally, the adaptation of nonstandard and LWLF-4 methods for simulating in three-phase one-dimensional flows. In general, the nonstandard scheme was considered the most efficient method in problems addressed, since its twodimensional version was satisfactory in capturing shock waves in two-phase flow in porous media.
2

Análise matemática de soluções descontínuas de leis de conservação hiperbólicas e resoluções numéricas para a captura de ondas de choque em escoamentos multifásicos em meios porosos / Mathematical analysis of discontinuous solutions of hyperbolic conservation laws and numerical resolutions for capturing of shock waves in multiphase flows in porous media

Nelson Machado Barbosa 17 April 2014 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / O processo de recuperação secundária de petróleo é comumente realizado com a injeção de água ou gás no reservatório a fim de manter a pressão necessária para sua extração. Para que o investimento seja viável, os gastos com a extração precisam ser menores do que o retorno financeiro obtido com a produção de petróleo. Objetivando-se estudar possíveis cenários para o processo de exploração, costuma-se utilizar simulações dos processos de extração. As equações que modelam esse processo de recuperação são de caráter hiperbólico e não lineares, as quais podem ser interpretadas como Leis de Conservação, cujas soluções são complexas por suas naturezas descontínuas. Essas descontinuidades ou saltos são conhecidas como ondas de choque. Neste trabalho foi abordada uma análise matemática para os fenômenos oriundos de leis de conservação, para em seguida utilizá-la no entendimento do referido problema. Foram estudadas soluções fracas que, fisicamente, podem ser interpretadas como ondas de choque ou rarefação, então, para que fossem distinguidas as fisicamente admissíveis, foi considerado o princípio de entropia, nas suas diversas formas. As simulações foram realizadas nos âmbitos dos escoamentos bifásicos e trifásicos, em que os fluidos são imiscíveis e os efeitos gravitacionais e difusivos, devido à pressão capilar, foram desprezados. Inicialmente, foi feito um estudo comparativo de resoluções numéricas na captura de ondas de choque em escoamento bifásico água-óleo. Neste estudo destacam-se o método Composto LWLF-k, o esquema NonStandard e a introdução da nova função de renormalização para o esquema NonStandard, onde obteve resultados satisfatórios, principalmente em regiões onde a viscosidade do óleo é muito maior do que a viscosidade da água. No escoamento bidimensional, um novo método é proposto, partindo de uma generalização do esquema NonStandard unidimensional. Por fim, é feita uma adaptação dos métodos LWLF-4 e NonStandard para a simulação em escoamentos trifásicos em domínios unidimensional. O esquema NonStandard foi considerado mais eficiente nos problemas abordados, uma vez que sua versão bidimensional mostrou-se satisfatória na captura de ondas de choque em escoamentos bifásicos em meios porosos. / The process of secondary oil recovery is commonly accomplished by injecting water or gas into the reservoir to maintain the necessary pressure for their extraction. So that the investment is viable spending extraction must be smaller than the financial return to oil production. Aiming to study possible scenarios for the exploration process, it is customary to use simulations of extraction processes. The equations that model this process of recovery are hyperbolic and nonlinear, which can be interpreted as Conservation Laws , whose solutions are complex by their discontinuous nature . These discontinuities or jumps are known as shock waves. Due to this importance, this work will be discussed a mathematical analysis of the phenomena arising from conservation laws, to then use it in the understanding of this problem. Weak solutions that physically can be interpreted as shock waves or rarefaction, so that they might be distinguished physically admissible were studied, was considered the principle of entropy, in its various forms. The simulations were performed in the fields of two-phase and three-phase flow, in which the fluids are immiscible and gravitational and diffusive effects due to capillary pressure, were discarded. Initially a comparative study of numerical resolutions in the capture of shock waves in water-oil two-phase flow was made. This study highlights LWLF k Composite method and Nonstandard. Was also presented a new renormalization function for nonstandard scheme with satisfactory results, especially in regions where the oil viscosity is much higher than the viscosity of the water. In twodimensional flow, a new method will be presented. The same is a generalization of onedimensional nonstandard schema. Finally, the adaptation of nonstandard and LWLF-4 methods for simulating in three-phase one-dimensional flows. In general, the nonstandard scheme was considered the most efficient method in problems addressed, since its twodimensional version was satisfactory in capturing shock waves in two-phase flow in porous media.

Page generated in 0.0597 seconds