• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy

Loizeau, Sebastien 14 June 2013 (has links) (PDF)
Dans un champ captant, comme celui qui alimente l'agglomération lyonnaise, le fonctionnement de chaque " objet " (bassins d'infiltration, puits, rivières, nappe, zone non saturée) et leurs interactions sont complexes et mal connus. Dans un premier temps, une série d'essais d'infiltration à différentes échelles dans un bassin artificiel de réalimentation a permis de mieux appréhender le fonctionnement de cet ouvrage et de chiffrer les paramètres hydrodynamiques de la zone non saturée. Les résultats des interprétations par méthodes numériques fondées sur l'équation de Richards ont montré que les flux infiltrés dans les bassins dépendent principalement de la conductivité hydraulique à saturation d'une couche située directement sous le sable calibré couvrant le fond du bassin, identifiée comme étant moins perméable que la nappe. Cette couche conditionne l'existence d'une zone non saturée. La réalisation d'essais de pompage dans l'aquifère sur les forages d'exploitation et sur un dispositif spécialement mis en place durant ce travail a permis de déterminer les paramètres hydrodynamiques de la nappe. Une analyse des observations et une modélisation conceptuelle en 2D, puis en 3D ont permis d'identifier les mécanismes prépondérants (stratifications, apports et prélèvements) et de simuler correctement à la fois les flux infiltrés dans un des bassins d'infiltration et la remontée de la nappe. A l'échelle d'un bassin, les flux infiltrés sont variables dans le temps, ils dépendent de l'état de colmatage de la surface d'infiltration mais également de la température de l'eau infiltrée et de l'état hydrique initial du sol sous le bassin. Les analyses de sensibilité réalisées avec les modèles mis en place indiquent que la conductivité hydraulique à saturation de l'aquifère, mais également la proximité des conditions aux limites imposées dans la nappe (les rivières et les puits de pompage) influencent de manière prépondérante la remontée de la nappe. Une modélisation 3D d'un autre secteur du champ captant comprenant deux bassins d'infiltration, deux bras de rivière ainsi que des puits de pompage a été réalisée. La condition à la limite imposée sur les rivières est du troisième type en accord avec l'observation d'un sous-écoulement en nappe. Les échanges nappe/rivières sont calés sur des observations à partir d'une chronique de propagation d'une onde de crue dans la nappe. Des piézomètres en flûte de pan, spécifiquement implantés à proximité d'un bassin, ont permis d'observer des différences de charge hydraulique fortes à différents niveaux de l'aquifère lorsque le bassin d'infiltration est en eau. La modélisation 3D est conforme à ces observations. Elle a confirmé l'importance du rôle d'une hétérogénéité de type argilo-sableuse (de conductivité hydraulique à saturation inférieure aux autres lithologies présentes dans l'aquifère) dans les écoulements (direction et flux). Le modèle développé représente correctement les flux infiltrés via les bassins ainsi que les fluctuations de la piézométrie de la nappe. Il permet de vérifier l'inversion des écoulements par rapport aux infiltrations de la rivière, d'identifier les puits alimentés par les bassins d'infiltration et également de mettre en évidence les flux de nappe passant sous la rivière.
2

Compréhension expérimentale et numérique des chemins de l'eau sur l'ensemble du champ captant de la Métropole de Lyon / Experimental and numerical understanding of water paths on the well field of Lyon agglomeration

Réfloch, Aurore 31 May 2018 (has links)
L’alimentation en eau potable des 1 300 000 habitants de la Métropole de Lyon provient essentiellement de réserves souterraines, puisées sur le site du champ captant de Crépieux-Charmy. Ce captage est un système complexe de par sa superficie (375 ha), le nombre d’ouvrages de pompage (111 puits et forages), le système de réalimentation artificielle (12 bassins d’infiltration), la présence de différents bras du Rhône en interaction avec l’eau souterraine, mais également du fait de la complexité lithologique naturelle du sous-sol. La compréhension des interactions entre les compartiments de ce système est nécessaire pour assurer la pérennisation quantitative et qualitative de la ressource.La caractérisation des écoulements repose sur trois outils essentiels : l’observation, l’expérimentation et la modélisation numérique.L’observation, basée sur les nombreuses données acquises in-situ, met en évidence le rôle prépondérant de l’exploitation hydrique du site sur les écoulements (pompages et bassins). La réalimentation artificielle met en jeu, annuellement, un volume d’eau qui équivaut à la moitié du volume puisé sur l’ensemble du site, et entraîne un réchauffement non négligeable de la nappe en période estivale. Les cartes piézométriques et thermiques à l’échelle du champ captant permettent de visualiser les évolutions spatiales et temporelles des écoulements. D’après l’analyse de données, le dôme hydraulique créé par la réalimentation artificielle (et destiné à obtenir une barrière hydraulique de protection contre une contamination accidentelle des eaux de surface) semble perdurer au maximum 1 à 2 jours après l’arrêt de l’alimentation des bassins. Un indice d’infiltrabilité est défini pour déterminer la capacité d’infiltration de chaque bassin : tenant compte des diverses variables affectant la vitesse d’infiltration, une diminution temporelle de l’indice d’infiltrabilité reflète le colmatage progressif de la couche de sable de fond de bassin. Cet indice est de ce fait un outil d’aide à la décision pour la priorisation des bassins à réhabiliter.Le volet expérimental se décline en deux points : la caractérisation des fonds de bassins par essais d’infiltration (gain d’infiltrabilité par renouvellement du sable, couche compactée sous le sable caractérisée par une forte anisotropie de sa conductivité hydraulique) et la caractérisation des sens d’écoulement par traçage thermique à l’échelle d’un bassin. Un dispositif expérimental, créé de part et d’autre d’un des bassins permet de suivre l’évolution piézométrique et thermique lors des cycles de remplissage. La création des 31 ouvrages de ce dispositif expérimental a permis de mieux caractériser la lithologie en présence, de valider la présence de la zone non saturée règlementaire au droit du bassin, de confirmer l’existence d’écoulements sous le Vieux-Rhône mais aussi de mettre en évidence le fonctionnement 3D des écoulements.Enfin, un modèle numérique a été créé pour simuler les transferts d’eau et de chaleur, sur l’ensemble du site de captage. Cet outil permet d’identifier et de quantifier les sources d’alimentation de la zone de captage, de mettre en évidence la protection partielle des ouvrages de pompage par les dômes hydrauliques créés par les bassins, et de montrer la complexité des relations nappe-rivière, notamment leur dépendance au niveau d’eau. D’ores et déjà opérationnel pour des temps longs (supérieurs à 15 jours), l’outil numérique proposé est exploitable pour des scénarios d’évolutions climatiques ou d’évolutions de l’exploitation du site. Pour les temps inférieurs à deux semaines, le modèle nécessite une amélioration de la connaissance des interactions nappe-rivière et des transferts thermiques (prise en compte du non-équilibre thermique local).Mots clés : Hydrogéologie, réalimentation artificielle, essais d’infiltration, traçages thermiques, modélisation hydro-thermique 3D. / The supply of drinking water for the 1,300,000 inhabitants of Lyon Metropole mainly comes from underground reserves in the well field of Crépieux-Charmy. This well field is a complex system because of its surface area (375 ha), the number of pumping wells (111 wells), the artificial recharge system (12 infiltration ponds), the interaction between the Rhône River and groundwater, as well as its natural lithological complexity. Understanding the interactions between the compartments of this system is necessary to ensure quantitative and qualitative sustainability of the water resource.The characterization of field-scale flows is based on three essential tools: observation, experimentation and numerical modelling.The observations, based on a lot of operational field data, highlight the influence of site operation on the flows (pumping and basins). Annually, artificial recharge requires a volume of water which accounts for half of the volume pumped on the whole site. This also leads to a significant rise in water table temperatures during summer periods. Piezometric and water temperature maps at the well field scale allow for visualization of the spatial and temporal evolutions of the flow directions. According to the data analysis, hydraulic domes created by the artificial recharge (and designed to provide a hydraulic barrier to protect against accidental contamination of superficial water) seem to persist for a maximum of 1 to 2 days after water supply of the basins has been stopped. An infiltration index has been defined in order to determine the infiltration capacity of each basin. It takes into account the multiple variables affecting the infiltration rate. The temporal evolution of the infiltration capacity of each basin illustrates the fouling of the basement sand layer. The infiltration index is also a decision support tool for the prioritization of basins to be rehabilitated.The experimental component is divided into two parts: basins characterization by infiltrometer tests (increase of infiltration by renewal of the sand layer, compacted layer under the sand characterized by a strong anisotropy of its hydraulic conductivities) and characterization of the flow direction by heat tracing at scale of an infiltration pond. An experimental system, created on both sides of one of the basins allows tracking of the evolution of piezometric and water temperature during filling cycles.The creation of the 31 piezometers of this experimental system enabled better characterization of the lithology of the ground, to validate the conservation of the unsaturated zone under the basin, to confirm the existence of flows under the Vieux-Rhône River, and to highlight the three-dimensional flows.A digital model has been created to reproduce water and heat transfer on the entire well field. This tool is used to identify and quantify the sources of water of the water catchment area, to highlight the partial protection of the pumping wells by the hydraulic domes, and to show the complexity of the groundwater-river relationship, in particular their dependence on the water level. Already operational on long periods (over 15 days), the proposed digital model is useful for scenarios of climate change or changes in operational conditions. For periods shorter than two weeks, the model requires an improvement in the knowledge of groundwater-river interactions and heat transfer (taking into account the local thermal non-equilibrium).Key words: Hydrogeology, artificial recharge, infiltrometer tests, heat tracing, 3D hydro-thermal modelling.
3

Amélioration de la compréhension des fonctionnements hydrodynamiques du champ captant de Crépieux-Charmy / Improvement of the understanding of hydrodynamic functioning of the Crépieux-Charmy well field

Loizeau, Sébastien 14 June 2013 (has links)
Dans un champ captant, comme celui qui alimente l'agglomération lyonnaise, le fonctionnement de chaque « objet » (bassins d'infiltration, puits, rivières, nappe, zone non saturée) et leurs interactions sont complexes et mal connus. Dans un premier temps, une série d'essais d'infiltration à différentes échelles dans un bassin artificiel de réalimentation a permis de mieux appréhender le fonctionnement de cet ouvrage et de chiffrer les paramètres hydrodynamiques de la zone non saturée. Les résultats des interprétations par méthodes numériques fondées sur l'équation de Richards ont montré que les flux infiltrés dans les bassins dépendent principalement de la conductivité hydraulique à saturation d'une couche située directement sous le sable calibré couvrant le fond du bassin, identifiée comme étant moins perméable que la nappe. Cette couche conditionne l'existence d'une zone non saturée. La réalisation d'essais de pompage dans l'aquifère sur les forages d'exploitation et sur un dispositif spécialement mis en place durant ce travail a permis de déterminer les paramètres hydrodynamiques de la nappe. Une analyse des observations et une modélisation conceptuelle en 2D, puis en 3D ont permis d'identifier les mécanismes prépondérants (stratifications, apports et prélèvements) et de simuler correctement à la fois les flux infiltrés dans un des bassins d'infiltration et la remontée de la nappe. A l'échelle d'un bassin, les flux infiltrés sont variables dans le temps, ils dépendent de l'état de colmatage de la surface d'infiltration mais également de la température de l'eau infiltrée et de l'état hydrique initial du sol sous le bassin. Les analyses de sensibilité réalisées avec les modèles mis en place indiquent que la conductivité hydraulique à saturation de l'aquifère, mais également la proximité des conditions aux limites imposées dans la nappe (les rivières et les puits de pompage) influencent de manière prépondérante la remontée de la nappe. Une modélisation 3D d'un autre secteur du champ captant comprenant deux bassins d'infiltration, deux bras de rivière ainsi que des puits de pompage a été réalisée. La condition à la limite imposée sur les rivières est du troisième type en accord avec l'observation d'un sous-écoulement en nappe. Les échanges nappe/rivières sont calés sur des observations à partir d'une chronique de propagation d'une onde de crue dans la nappe. Des piézomètres en flûte de pan, spécifiquement implantés à proximité d'un bassin, ont permis d'observer des différences de charge hydraulique fortes à différents niveaux de l'aquifère lorsque le bassin d'infiltration est en eau. La modélisation 3D est conforme à ces observations. Elle a confirmé l'importance du rôle d'une hétérogénéité de type argilo-sableuse (de conductivité hydraulique à saturation inférieure aux autres lithologies présentes dans l'aquifère) dans les écoulements (direction et flux). Le modèle développé représente correctement les flux infiltrés via les bassins ainsi que les fluctuations de la piézométrie de la nappe. Il permet de vérifier l'inversion des écoulements par rapport aux infiltrations de la rivière, d'identifier les puits alimentés par les bassins d'infiltration et également de mettre en évidence les flux de nappe passant sous la rivière. / In a well field of the Lyon metropolitan area, designed for drinking water supply, behaviour of each object (infiltration basins, wells, rivers, aquifer, and unsaturated zone) and their interactions are complex and not well-known. As a first step, infiltration tests at different spatial scales in one artificial basin were performed to better understand the basin operation and to estimate the hydrodynamic parameters of the unsaturated zone. Results of interpretation, using numerical methods based on Richards equation, reveal that infiltrated basin fluxes mainly depend on saturated hydraulic conductivity of a layer located just below the calibrated sand layer that cover the basin bottom. Indeed this layer has been estimated to be less permeable than the aquifer, which allows the existence of the unsaturated zone below. Pumping tests in the groundwater have been performed using production wells and a well specially implemented during this thesis work in order to estimate aquifer hydrodynamic parameters. Observations analysis and a conceptual modelling, in 2D and then in 3D, lead to a better understanding of the controlling mechanisms (stratification, input and output) and to simulate both basin infiltration rates and water table rise. Considering the whole basin scale, input fluxes are transient, related to the clogging statement of the infiltration area but also to the temperature of inflow water and the initial statement of the soil just below the basin. Sensibility analyses using the models highlight that the amount of the water table rise is mainly influenced by the aquifer saturated hydraulic conductivity and also by the location of imposed boundaries in the aquifer (rivers and pumping wells). The model properly accounts basin inflow fluxes and water table fluctuations. The model is able to verify if flows are reversed in relation to river exchanges, if wells are fed by infiltration basins and it highlights aquifer flows below the river. A 3D modelling has been realised in another area of the well field, comprising two infiltration basins, two river arms and pumping wells. In agreement with underflow in the aquifer, rivers are imposed in the model as third kind boundary conditions. Aquifer and river exchanges are calibrated with observed data of one aquifer flood-wave propagation. Significant differences of hydraulic heads have been observed at different depths of the aquifer using panpipes piezometers, specifically implemented, close to one infiltration basin. Theses differences are closely related to basin operation. These observations are properly calculated by the 3D model. Using the model, the effect of one sandy-clay heterogeneous layer (whose saturated hydraulic conductivity is lower than the ones of other aquifer lithologies) on aquifer flows (direction and flux) is notable. The model properly accounts basin inflow fluxes and water table fluctuations. The model is able to verify if flows are reversed in relation to river exchanges, if wells are fed by infiltration basins and it highlights aquifer flow below the river.

Page generated in 0.1365 seconds