• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimation parcimonieuse de biais multitrajets pour les systèmes GNSS

Lesouple, Julien 15 March 2019 (has links) (PDF)
L’évolution des technologies électroniques (miniaturisation, diminution des coûts) a permis aux GNSS (systèmes de navigation par satellites) d’être de plus en plus accessibles et doncutilisés au quotidien, par exemple par le biais d’un smartphone, ou de récepteurs disponibles dans le commerce à des prix raisonnables (récepteurs bas-coûts). Ces récepteurs fournissent à l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le récepteur et les satellites visibles entre autres. Ces récepteurs sont donc devenus très répandus pour les utilisateurs souhaitant évaluer des techniques de positionnement sans développer tout le hardware nécessaire. Les signaux issus des satellites GNSS sont perturbés par de nombreuses sources d’erreurs entre le moment où ils sont traités par le récepteurs pour estimer la mesure correspondante. Il est donc nécessaire decompenser chacune des ces erreurs afin de fournir à l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intérêt, est le phénomène de réflexion des différents signaux sur les éventuels obstacles de la scène dans laquelle se trouve l’utilisateur, appelé multitrajets. L’objectif de cette thèse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La première idée développée dans cette thèse est de supposer que ces signaux multitrajets donnent naissance à des biais additifs parcimonieux. Cette hypothèse de parcimonie permet d’estimer ces biais à l’aide de méthodes efficaces comme le problème LASSO. Plusieurs variantes ont été développés autour de cette hypothèse visant à contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxième idée explorée dans cette thèse est une technique d’estimation des erreurs de mesure GNSS à partir d’une solution de référence, qui suppose que les erreurs dues aux multitrajets peuvent se modéliser à l’aide de mélanges de Gaussiennes ou de modèles de Markov cachés. Deux méthodes de positionnement adaptées à ces modèles sont étudiées pour la navigation GNSS.
2

Estimation parcimonieuse de biais multitrajets pour les systèmes GNSS / Sparse estimation of multipath biases for GNSS

Lesouple, Julien 15 March 2019 (has links)
L’évolution des technologies électroniques (miniaturisation, diminution des coûts) a permis aux GNSS (systèmes de navigation par satellites) d’être de plus en plus accessibles et doncutilisés au quotidien, par exemple par le biais d’un smartphone, ou de récepteurs disponibles dans le commerce à des prix raisonnables (récepteurs bas-coûts). Ces récepteurs fournissent à l’utilisateur plusieurs informations, comme par exemple sa position et sa vitesse, ainsi que des mesures des temps de propagation entre le récepteur et les satellites visibles entre autres. Ces récepteurs sont donc devenus très répandus pour les utilisateurs souhaitant évaluer des techniques de positionnement sans développer tout le hardware nécessaire. Les signaux issus des satellites GNSS sont perturbés par de nombreuses sources d’erreurs entre le moment où ils sont traités par le récepteurs pour estimer la mesure correspondante. Il est donc nécessaire decompenser chacune des ces erreurs afin de fournir à l’utilisateur la meilleure position possible. Une des sources d’erreurs recevant beaucoup d’intérêt, est le phénomène de réflexion des différents signaux sur les éventuels obstacles de la scène dans laquelle se trouve l’utilisateur, appelé multitrajets. L’objectif de cette thèse est de proposer des algorithmes permettant de limiter l’effet des multitrajets sur les mesures GNSS. La première idée développée dans cette thèse est de supposer que ces signaux multitrajets donnent naissance à des biais additifs parcimonieux. Cette hypothèse de parcimonie permet d’estimer ces biais à l’aide de méthodes efficaces comme le problème LASSO. Plusieurs variantes ont été développés autour de cette hypothèse visant à contraindre le nombre de satellites ne souffrant pas de multitrajet comme non nul. La deuxième idée explorée dans cette thèse est une technique d’estimation des erreurs de mesure GNSS à partir d’une solution de référence, qui suppose que les erreurs dues aux multitrajets peuvent se modéliser à l’aide de mélanges de Gaussiennes ou de modèles de Markov cachés. Deux méthodes de positionnement adaptées à ces modèles sont étudiées pour la navigation GNSS. / The evolution of electronic technologies (miniaturization, price decreasing) allowed Global Navigation Satellite Systems (GNSS) to be used in our everyday life, through a smartphone for instance, or through receivers available in the market at reasonable prices (low cost receivers). Those receivers provide the user with many information, such as his position or velocity, but also measurements such as propagation delays of the signals emitted by the satellites and processed by the receiver. These receivers are thus widespread for users who want to challenge positioning techniques without developing the whole product. GNSS signals are affected by many error sources between the moment they are emitted and the moment they are processed by the receiver to compute the measurements. It is then necessary to mitigate each of these error sources to provide the user the most accurate solution. One of the most intense research topic in navigation is the phenomenon of reflexions on the eventual obstacles in the scene the receiver is located in, called multipath. The aim of this thesis is to propose algorithms allowing the effects of multipath on GNSS measurements to be reduced. The first idea presented in this thesis is to assume these multipath lead to sparse additive biases. This hypothesis allows us to estimate this biases thanks to efficient methods such as the LASSO problem. The second idea explored in this thesis is an estimation method of GNSS measurement errors corresponding to the proposed navigation algorithm thanks to a reference trajectory, which assumes these errors can be modelled by Gaussian mixtures or Hidden Markov Models. Two filtering methods corresponding to these two models are studied for GNSS navigation.
3

Surveillance d'intégrité des structures par apprentissage statistique : application aux structures tubulaires / Structural health monitoring using statistical learning methods : Application on tubular structures

Mountassir, Mahjoub El 30 April 2019 (has links)
Les approches de surveillance de l’intégrité des structures ont été proposées pour permettre un contrôle continu de l’état des structures en intégrant à celle-ci des capteurs intelligents. En effet, ce contrôle continu doit être effectué pour s’assurer du bon fonctionnement de celles-ci car la présence d’un défaut dans la structure peut aboutir à un accident catastrophique. Cependant, la variation des conditions environnementales et opérationnelles (CEO) dans lesquelles la structure évolue, impacte sévèrement les signaux collectés ce qui induit parfois une mauvaise interprétation de la présence du défaut dans la structure. Dans ce travail de thèse, l’application des méthodes d’apprentissage statistiques classiques a été envisagée dans le cas des structures tubulaires. Ici, les effets des paramètres de mesures sur la robustesse de ces méthodes ont été investiguées. Ensuite, deux approches ont été proposées pour remédier aux effets des CEO. La première approche suppose que la base de données des signaux de référence est suffisamment riche en variation des CEO. Dans ce cas, une estimation parcimonieuse du signal mesuré est calculée. Puis, l’erreur d’estimation est utilisée comme indicateur de défaut. Tandis que la deuxième approche est utilisée dans le cas où la base de données des signaux des références contient une variation limitée des CEO mais on suppose que celles-ci varient lentement. Dans ce cas, une mise à jour du modèle de l’état sain est effectuée en appliquant l’analyse en composante principale (PCA) par fenêtre mobile. Dans les deux approches, la localisation du défaut a été assurée en utilisant une fenêtre glissante sur le signal provenant de l’état endommagé. / To ensure better working conditions of civil and engineering structures, inspections must be made on a regular basis. However, these inspections could be labor-intensive and cost-consuming. In this context, structural health monitoring (SHM) systems using permanently attached transducers were proposed to ensure continuous damage diagnostic of these structures. In SHM, damage detection is generally based on comparison between the healthy state signals and the current signals. Nevertheless, the environmental and operational conditions will have an effect on the healthy state signals. If these effects are not taken into account they would result in false indication of damage (false alarm). In this thesis, classical machine learning methods used for damage detection have been applied in the case of pipelines. The effects of some measurements parameters on the robustness of these methods have been investigated. Afterthat, two approaches were proposed for damage diagnostic depending on the database of reference signals. If this database contains large variation of these EOCs, a sparse estimation of the current signal is calculated. Then, the estimation error is used as an indication of the presence of damage. Otherwise, if this database is acquired at limited range of EOCs, moving window PCA can be applied to update the model of the healthy state provided that the EOCs show slow and continuous variation. In both approaches, damage localization was ensured using a sliding window over the damaged pipe signal.

Page generated in 0.0923 seconds