Spelling suggestions: "subject:"estimativa dde erro"" "subject:"estimativa dde rro""
1 |
Técnicas adaptativas baseadas em estimativas de erro a posteriori para o Método dos Elementos Finitos Generalizados e suas versões estáveis / Adaptive techniques based on a posteriori error estimations for conventional and stable Generalized Finite Element MethodsBento, Murilo Henrique Campana 01 April 2019 (has links)
O Método dos Elementos Finitos Generalizados (MEFG) propõe, basicamente, uma ampliação no espaço de aproximação do Método dos Elementos Finitos (MEF) convencional por meio de funções de enriquecimento que representem bem comportamentos locais da solução do problema. Ele tem se apresentado como uma alternativa eficaz para a obtenção de soluções numéricas com boa precisão para problemas nos quais o MEF convencional requer custo computacional bastante elevado. Em relação ao controle sobre a precisão da resposta numérica obtida, o estudo e análise de erros de discretização, assim como a implementação de estratégias adaptativas, são temas que já foram amplamente abordados para o MEF e recentemente vêm sendo explorados no contexto do MEFG e suas versões estáveis. Neste trabalho, trata-se do tema de adaptatividade para o MEFG, objetivando melhor avaliar a precisão das soluções encontradas assim como garantir que elas atendam a limitações pré-especificadas para medidas dos erros. Em primeiro lugar, avalia-se a utilização de um estimador de erro a posteriori, recentemente proposto, como indicador de regiões onde a adaptatividade h ou p possa ser aplicada. Com o indicador adotado, estende-se para o MEFG estratégias h-adaptativas comumente utilizadas para o MEF, realizadas a partir de sucessivas gerações da malha. Além disso, explora-se neste trabalho uma técnica de agrupamento de partições da unidade, específica do MEFG, para tratar problemas de malhas irregulares e possibilitar análises h-adaptativas realizadas sobre sub-regiões do domínio do problema. Já no que se refere às análises p-adaptativas, a estratégia consiste em definir regiões de interesse para ativar o enriquecimento polinomial da solução aproximada. Exemplos numéricos ilustram a efetividade de todas as análises adaptativas implementadas, propostas para o MEFG e suas versões estáveis, as quais proporcionam respostas que atendem a limites de tolerância previamente estabelecidos. / The Generalized Finite Element Method (GFEM) proposes the generation of numerical approximations that belong to an space obtained by augmenting low-order standard finite element approximation spaces by enrichment functions that well represent local behaviours of the problem solution. The method has become an efficient alternative to obtain solutions with good accuracy for problems in which the standard Finite Element Method (FEM) would require excessively high computational cost. Regarding the control over the numerical solutions\' accuracy, discretization error analysis and study, as well as the implementation of adaptive strategies, are subjects largely studied for the FEM and they are recently being exploited in the GFEM and its stable versions context. In this work, adaptivity for the GFEM is addressed, looking for better evaluate the solutions\' accuracy and ensure that they meet users\' pre-specified limits for error measures. Firstly, the use of a recently proposed a posteriori error estimator as an indicator of the regions where h- or p-adaptivity can be performed is evaluated. With this chosen indicator, h-adaptive strategies commonly used for the FEM are extended to the GFEM by performing successive remeshings. Moreover, a partition of unity clustering technique is also exploited in order to treat nonmatching meshes and to enable h-adaptive analysis to be performed over some pre-defined domain subregions. Regarding the p-adaptive analysis, the basic strategy consists of defining some regions over which it will be set polynomial enrichments for the approximate solution using a particular GFEM stable version. Numerical examples show the effectiveness of all performed adaptive analysis, proposed for conventional and stable GFEMs. All implementations provide responses that can meet the users\' pre-specified tolerance.
|
2 |
Estimador de erro a posteriori baseado em recuperação do gradiente para o método dos elementos finitos generalizados / A posteriori error estimator based on gradient recovery for the generalized finite element methodLins, Rafael Marques 11 May 2011 (has links)
O trabalho aborda a questão das estimativas a posteriori dos erros de discretização e particularmente a recuperação dos gradientes de soluções numéricas obtidas com o método dos elementos finitos (MEF) e com o método dos elementos finitos generalizados (MEFG). Inicialmente, apresenta-se, em relação ao MEF, um resumido estado da arte e conceitos fundamentais sobre este tema. Em seguida, descrevem-se os estimadores propostos para o MEF denominados Estimador Z e \"Superconvergent Patch Recovery\" (SPR). No âmbito do MEF propõe-se de modo original a incorporação do \"Singular Value Decomposition\" (SVD) ao SPR aqui mencionada como SPR Modificado. Já no contexto do MEFG, apresenta-se um novo estimador do erro intitulado EPMEFG, estendendo-se para aquele método as idéias do SPR Modificado. No EPMEFG, a função polinomial local que permite recuperar os valores nodais dos gradientes da solução tem por suporte nuvens (conjunto de elementos finitos que dividem um nó comum) e resulta da aplicação de um critério de aproximação por mínimos quadrados em relação aos pontos de superconvergência. O número destes pontos é definido a partir de uma análise em cada elemento que compõe a nuvem, considerando-se o grau da aproximação local do campo de deslocamentos enriquecidos. Exemplos numéricos elaborados com elementos lineares triangulares e quadrilaterais são resolvidos com o Estimador Z, o SPR Modificado e o EPMEFG para avaliar a eficiência de cada estimador. Essa avaliação é realizada mediante o cálculo dos índices de efetividade. / The paper addresses the issue of a posteriori estimates of discretization errors and particularly the recovery of gradients of numerical solutions obtained with the finite element method (FEM) and the generalized finite element method (GFEM). Initially, it is presented, for the MEF, a brief state of the art and fundamental concepts about this topic. Next, it is described the proposed estimators for the FEM called Z-Estimator and Superconvergent Patch Recovery (SPR). It is proposed, originally, in the ambit of the FEM, the incorporation of the \"Singular Value Decomposition (SVD) to SPR mentioned here as Modified SPR. On the other hand, in the context of GFEM, it is presented a new error estimator entitled EPMEFG in order to expand the ideas of Modified SPR to that method. In EPMEFG, the local polynomial function that allows to recover the nodal values of the gradients of the solution has for support clouds (set of finite elements that share a common node) and results from the applying of a criterion of least squares approximation in relation to the superconvergent points. The number of these points is defined from an analysis of each cloud\'s element, considering the degree of local approximation of the displacement field enriched. Numerical examples elaborated with linear triangular and quadrilateral elements are solved with the Z-Estimator, the Modified SPR and the EPMEFG to evaluate the efficiency of each estimator. This evaluation is done calculating the effectivity indexes.
|
3 |
Estimador de erro a posteriori baseado em recuperação do gradiente para o método dos elementos finitos generalizados / A posteriori error estimator based on gradient recovery for the generalized finite element methodRafael Marques Lins 11 May 2011 (has links)
O trabalho aborda a questão das estimativas a posteriori dos erros de discretização e particularmente a recuperação dos gradientes de soluções numéricas obtidas com o método dos elementos finitos (MEF) e com o método dos elementos finitos generalizados (MEFG). Inicialmente, apresenta-se, em relação ao MEF, um resumido estado da arte e conceitos fundamentais sobre este tema. Em seguida, descrevem-se os estimadores propostos para o MEF denominados Estimador Z e \"Superconvergent Patch Recovery\" (SPR). No âmbito do MEF propõe-se de modo original a incorporação do \"Singular Value Decomposition\" (SVD) ao SPR aqui mencionada como SPR Modificado. Já no contexto do MEFG, apresenta-se um novo estimador do erro intitulado EPMEFG, estendendo-se para aquele método as idéias do SPR Modificado. No EPMEFG, a função polinomial local que permite recuperar os valores nodais dos gradientes da solução tem por suporte nuvens (conjunto de elementos finitos que dividem um nó comum) e resulta da aplicação de um critério de aproximação por mínimos quadrados em relação aos pontos de superconvergência. O número destes pontos é definido a partir de uma análise em cada elemento que compõe a nuvem, considerando-se o grau da aproximação local do campo de deslocamentos enriquecidos. Exemplos numéricos elaborados com elementos lineares triangulares e quadrilaterais são resolvidos com o Estimador Z, o SPR Modificado e o EPMEFG para avaliar a eficiência de cada estimador. Essa avaliação é realizada mediante o cálculo dos índices de efetividade. / The paper addresses the issue of a posteriori estimates of discretization errors and particularly the recovery of gradients of numerical solutions obtained with the finite element method (FEM) and the generalized finite element method (GFEM). Initially, it is presented, for the MEF, a brief state of the art and fundamental concepts about this topic. Next, it is described the proposed estimators for the FEM called Z-Estimator and Superconvergent Patch Recovery (SPR). It is proposed, originally, in the ambit of the FEM, the incorporation of the \"Singular Value Decomposition (SVD) to SPR mentioned here as Modified SPR. On the other hand, in the context of GFEM, it is presented a new error estimator entitled EPMEFG in order to expand the ideas of Modified SPR to that method. In EPMEFG, the local polynomial function that allows to recover the nodal values of the gradients of the solution has for support clouds (set of finite elements that share a common node) and results from the applying of a criterion of least squares approximation in relation to the superconvergent points. The number of these points is defined from an analysis of each cloud\'s element, considering the degree of local approximation of the displacement field enriched. Numerical examples elaborated with linear triangular and quadrilateral elements are solved with the Z-Estimator, the Modified SPR and the EPMEFG to evaluate the efficiency of each estimator. This evaluation is done calculating the effectivity indexes.
|
4 |
A posteriori error estimations for the generalized finite element method and modified versions / Estimativas de erro a-posteriori para o método dos elementos finitos generalizados e versões modificadasLins, Rafael Marques 07 August 2015 (has links)
This thesis investigates two a posteriori error estimators, based on gradient recovery, aiming to fill the gap of the error estimations for the Generalized FEM (GFEM) and, mainly, its modified versions called Corrected XFEM (C-XFEM) and Stable GFEM (SGFEM). In order to reach this purpose, firstly, brief reviews regarding the GFEM and its modified versions are presented, where the main advantages attributed to each numerical method are highlighted. Then, some important concepts related to the error study are presented. Furthermore, some contributions involving a posteriori error estimations for the GFEM are shortly described. Afterwards, the two error estimators hereby proposed are addressed focusing on linear elastic fracture mechanics problems. The first estimator was originally proposed for the C-XFEM and is hereby extended to the SGFEM framework. The second one is based on a splitting of the recovered stress field into two distinct parts: singular and smooth. The singular part is computed with the help of the J integral, whereas the smooth one is calculated from a combination between the Superconvergent Patch Recovery (SPR) and Singular Value Decomposition (SVD) techniques. Finally, various numerical examples are selected to assess the robustness of the error estimators considering different enrichment types, versions of the GFEM, solicitant modes and element types. Relevant aspects such as effectivity indexes, error distribution and convergence rates are used for describing the error estimators. The main contributions of this thesis are: the development of two efficient a posteriori error estimators for the GFEM and its modified versions; a comparison between the GFEM and its modified versions; the identification of the positive features of each error estimator and a detailed study concerning the blending element issues. / Esta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM (GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são abordados focando em problemas da mecânica da fratura elástico linear. O primeiro estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de efetividade, distribuição do erro e taxas de convergência são usados para descrever os estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma comparação entre o GFEM e suas versões modificadas; a identificação das características positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos de mistura.
|
5 |
A posteriori error estimations for the generalized finite element method and modified versions / Estimativas de erro a-posteriori para o método dos elementos finitos generalizados e versões modificadasRafael Marques Lins 07 August 2015 (has links)
This thesis investigates two a posteriori error estimators, based on gradient recovery, aiming to fill the gap of the error estimations for the Generalized FEM (GFEM) and, mainly, its modified versions called Corrected XFEM (C-XFEM) and Stable GFEM (SGFEM). In order to reach this purpose, firstly, brief reviews regarding the GFEM and its modified versions are presented, where the main advantages attributed to each numerical method are highlighted. Then, some important concepts related to the error study are presented. Furthermore, some contributions involving a posteriori error estimations for the GFEM are shortly described. Afterwards, the two error estimators hereby proposed are addressed focusing on linear elastic fracture mechanics problems. The first estimator was originally proposed for the C-XFEM and is hereby extended to the SGFEM framework. The second one is based on a splitting of the recovered stress field into two distinct parts: singular and smooth. The singular part is computed with the help of the J integral, whereas the smooth one is calculated from a combination between the Superconvergent Patch Recovery (SPR) and Singular Value Decomposition (SVD) techniques. Finally, various numerical examples are selected to assess the robustness of the error estimators considering different enrichment types, versions of the GFEM, solicitant modes and element types. Relevant aspects such as effectivity indexes, error distribution and convergence rates are used for describing the error estimators. The main contributions of this thesis are: the development of two efficient a posteriori error estimators for the GFEM and its modified versions; a comparison between the GFEM and its modified versions; the identification of the positive features of each error estimator and a detailed study concerning the blending element issues. / Esta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM (GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são abordados focando em problemas da mecânica da fratura elástico linear. O primeiro estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de efetividade, distribuição do erro e taxas de convergência são usados para descrever os estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma comparação entre o GFEM e suas versões modificadas; a identificação das características positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos de mistura.
|
Page generated in 0.1007 seconds