Spelling suggestions: "subject:"estrogen -- atherapeutic used"" "subject:"estrogen -- btherapeutic used""
11 |
The relationship between sex steroid levels and memory functions in womenPhillips, Susana M. (Susana Maria) January 1994 (has links)
No description available.
|
12 |
An investigation into the neuroprotective effects of estrogen and progesterone in a model of homocysteine-induced neurodegerationWu, Wing Man January 2006 (has links)
Homocysteine (Hcy) is a sulfur containing amino acid and is a potent neurotoxin. It has been shown that elevated levels of Hcy, termed hyperhomocysteinemia, plays a role in the pathologies of Alzheimer’s disease (AD) and age-related cognitive decline. Hcy is a glutamate agonist, which causes in increase in Ca[superscript (2+)] influx via the activation of NMDA class of excitatory amino acid receptors, which results in neuronal cell death and apoptosis. Estrogen and progesterone are female hormones that are responsible for reproduction and maternal behaviour. However, in the last decade, it is evident that both female hormones have neuroprotective properties in many animal models of neurodegeneration. Collectively, both estrogen and progesterone reduce the consequences of the oxidative stress by enhancing the antioxidant defence mechanisms, reducing excitotoxicity by altering glutamate receptor activity and reducing the damage caused by lipid peroxidation. However, the mechanisms by which estrogen and progesterone provide such neuroprotection probably depend on the type and concentration of hormone present. Moreover, numerous studies have shown that hormone replacement therapy (HRT, estrogen and progestins) or estrogen-only replacement therapy (ERT) may prevent or delay the onset of AD and improve cognition for women with AD. Clinical trials have also shown that women taking HRT may modify the effects of Hcy levels on cognitive functioning. Oxidative stress increases in the aging brain and thus has a powerful effect on enhanced susceptibility to neurodegenerative disease. The detection and measurement of lipid peroxidation and superoxide anion radicals in the brain tissue supports the involvement of free radical reactions in neurotoxicity and in neurodegenerative disorders. The hippocampus is an important region of the brain responsible for the formation of memory. However, agents that induce stress in this area have harmful effects and could lead to dementia. This study aims to investigate and clarify the neuroprotective effects of estrogen and progesterone, using Hcy-induced neurodegenerative models. The initial studies demonstrate that estrogen and progesterone have the ability to scavenge potent free radicals. Histological studies undertaken reveal that both estrogen and progesterone protect against Hcy-induced neuronal cell death. In addition, immunohistochemical investigations show that Hcy-induced apoptosis in the hippocampus can be inhibited by both estrogen and progesterone. However, estrogen also acts at the NMDA receptor as an agonist, while progesterone blocks at the NMDA receptor. These mechanisms reduce the ability of Hcy to cause damage to neurons, since Hcy-induced neurotoxicity is dependent on the overstimulation of the NMDA receptor. SOD and GPx are important enzymatic antioxidants which can react with ROS and neutralize them before these inflict damage in the brain. Hcy can increase oxidative stress by inhibiting expression and function of these antioxidants. However, it has been shown that the antioxidant abilities of both estrogen and progesterone can up-regulate the activities of SOD and GPx. These results provide further evidence that estrogen and progesterone act as antioxidants and are free radical scavengers. The discovery of neuroprotective agents is becoming important as accumulating evidence indicates the protective role of both estrogen and progesterone in Hcy-induced neurodegeneration. Thus further work in clinical trials is needed to examine whether reducing Hcy levels with HRT can become the treatment of neurodegenerative disorders, such as Alzheimer’s disease.
|
13 |
Intersections of feminist and medical constructions of menopause in primary medical care and mass media: risk, choice and agencyMurtagh, Madeleine Josephine. January 2001 (has links) (PDF)
Includes bibliographical references (leaves 254-288). Examines language used by general practitioners and in mass media to ask 'what are the implications of constructions of menopause for health care practice and public health for women at menopause?'. Presents the findings of qualitative analysis of semi-structured interviews with nine general practitioners working in rural South Australia and qualitative and quantitative analyses of 345 south Australian newspaper articles from 1986 to 1998.
|
14 |
Intersections of feminist and medical constructions of menopause in primary medical care and mass media: risk, choice and agency / Madeleine Josephine Murtagh.Murtagh, Madeleine Josephine January 2001 (has links)
Includes bibliographical references (leaves 254-288). / x, 288 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Examines language used by general practitioners and in mass media to ask 'what are the implications of constructions of menopause for health care practice and public health for women at menopause?'. Presents the findings of qualitative analysis of semi-structured interviews with nine general practitioners working in rural South Australia and qualitative and quantitative analyses of 345 south Australian newspaper articles from 1986 to 1998. / Thesis (Ph.D.)--University of Adelaide, Dept. of Public Health, 2001?
|
15 |
Insight into estrogen action in breast cancer via the study of a novel nuclear receptor corepressor : SLIRPHatchell, Esme Claire January 2008 (has links)
[Truncated abstract] Breast cancer is the cause of significant suffering and death in our community. It is now estimated that the risk of developing breast cancer for an Australian woman before the age of 85 is 1 in 8, with this risk rising for unknown reasons. While mortality rates from breast cancer are falling due to increased awareness and early detection, few new treatments have been developed from an advanced understanding of the molecular basis of the disease. From decades of scientific research it is clear that estrogen (E2) has a large role to play in breast cancer. However, the basic mechanism behind E2 action in breast cancer remains unclear. E2 plays a fundamental role in breast cancer cell proliferation and is highly expressed in breast cancers, thus, it is important to understand both E2 and its receptor, the estrogen receptor (ER). The ER is a member of the nuclear receptor (NR) superfamily. The NR superfamily consists of a large group of proteins which regulate a large number of homeostatic proteins together with regulator proteins termed coregulators and corepressors. SRA (steroid receptor RNA activator) is the only known RNA coactivator and augments transactivation by NRs. SRA has been demonstrated to play an important role in mediating E2 action (Lanz et al., 1999; Lanz et al., 2003) and its expression is aberrant in many human breast tumors, suggesting a potential role in breast tumorigenesis (Murphy et al., 2000). Despite evidence that an alternative splice variant of SRA exists as a protein (Chooniedass-Kothari et al., 2004), it has been conclusively shown that SRA can function as an RNA transcript to coactivate NR transcription (Lanz et al., 1999; Lanz et al., 2002; Lanz et al., 2003). The precise mechanism by which SRA augments ER activity remains unknown. However, it is currently hypothesized that SRA acts as an RNA scaffold for other coregulators at the transcription initiation site. Several SRA stem loops have been identified as important for SRA function, including structure (STR) 1, 5 and 7 (Lanz et al., 2002; Zhao et al., 2007). Previously, I sought to identify SRA-binding proteins using a specific stem-loop structure of SRA (STR7) that was identified as both important for its coactivator function (Lanz et al., 2002) and also as a target for proteins from breast cancer cell extracts (Hatchell, 2002). From a yeast E. Hatchell Abstract iii III hybrid screen using STR7 as bait, I identified a novel protein which was named SLIRP (Patent Number: WO/2007/009194): SRA stem-Loop Interacting RNA-binding Protein (Hatchell, 2002; Hatchell et al., 2006). '...' This thesis demonstrates that SLIRP modulates NR transactivation, provides mechanistic insight into interactions between SRA, SRC-1, HSP-60 and NCoR and suggests that SLIRP may regulate mitochondrial function. These studies contribute significantly to the growing field of NR biology, and contribute more specifically to the elucidation of estrogen action in breast cancer. Furthermore, it lays a strong and exciting foundation for further studies to evaluate SLIRP as a biomarker and potential therapeutic target in hormone dependent cancers.
|
Page generated in 0.0713 seconds