• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Galaxy Power Spectrum Analysis: A Monte-Carlo Approach / Análise do Espectro de Potências de Galáxias: Uma Abordagem via métodos de Monte-Carlo

Loureiro, Arthur Eduardo da Mota 01 June 2015 (has links)
Many galaxy surveys are planned to release their data over the next few years. Each different survey has its own geometrical limitations, which reflects upon the data as a selection function the spatial distribution of certain types of galaxies. Given a galaxy map (real or mock), the main goal of this work is to obtain information about how the selection function affects some of the cosmological parameters which can be probed from large-scale structure. A Monte-Carlo Markov Chain method is proposed in order to probe the effects of considering the selection functions parameters as nuisance parameters. The method consists in combining realizations of simulated galaxy catalogs using theoretical matter power spectra, combined with an optimal power spectrum estimator method. Theory and data are then compared in a multivariate Gaussian representing the likelihood function. This Monte-Carlo method has proven robust and capable of probing selection function effects on the cosmological parameters, showing that the simple marginalization over the nuisance parameters might lead to wrong estimates on the cosmology. The method is applied to obtain forecasts for these effects on the upcoming J-PAS Luminous Red Galaxies data and is employed to obtain constraints on the Hubble parameter (H0), the dark matter density (c) and two parameters of the equation of state of dark energy (w0 and wa). / Nos próximos anos, diversos levantamentos de galáxias planejam lançar uma quantidade considerável de novos dados, marcando, assim, o início da chamda era da cosmologia de precisão. Cada levantamento possui suas próprias limitações geométricas, que manifestam- se perante os dados na forma de uma função de seleção, ou seja, uma distribuição espacial de cada tipo de galáxia. A partir de um mapa de galáxias (real ou simulado), o principal objetivo desse trabalho foi descobrir como a função de seleção afeta alguns dos parâmetros cosmológicos que podem ser obtidos através de dados futuros de estrutura em larga escala. Portanto, propôs-se um método de Monte-Carlo com cadeias de Markov para estudar os efeitos decorrentes da inclusão dos parâmetros da função de seleção como nuisance parameters. Esse método consiste em combinar simulações de catálogos de galáxias, usando um espectro de potências teórico da matéria junto com um estimador ótimo, a fim de obter ambos espectros (teórico e observacional) e compará-los em uma verossimilhança Gaussiana-multivariada. O método de Monte-Carlo provou-se robusto e capaz de demonstrar os efeitos da função de seleção sobre as estimativas dos parâmetros cosmológicos, comprovando que o simples ato de marginalizar sobre os parâmetros não desejados pode levar a estimativas equivocadas na cosmologia em quesão. Finalmente, esse método foi aplicado nas estimações do parâmetro de Hubble (H0), na densidade de matéria escura (c) e em dois dos parâmetros da equação de estado da energia escura (w0 e wa) com o objetivo de prever tais efeitos para dados futuros do levantamento J-PAS com Galáxias Vermelhas Luminosas.
2

Galaxy Power Spectrum Analysis: A Monte-Carlo Approach / Análise do Espectro de Potências de Galáxias: Uma Abordagem via métodos de Monte-Carlo

Arthur Eduardo da Mota Loureiro 01 June 2015 (has links)
Many galaxy surveys are planned to release their data over the next few years. Each different survey has its own geometrical limitations, which reflects upon the data as a selection function the spatial distribution of certain types of galaxies. Given a galaxy map (real or mock), the main goal of this work is to obtain information about how the selection function affects some of the cosmological parameters which can be probed from large-scale structure. A Monte-Carlo Markov Chain method is proposed in order to probe the effects of considering the selection functions parameters as nuisance parameters. The method consists in combining realizations of simulated galaxy catalogs using theoretical matter power spectra, combined with an optimal power spectrum estimator method. Theory and data are then compared in a multivariate Gaussian representing the likelihood function. This Monte-Carlo method has proven robust and capable of probing selection function effects on the cosmological parameters, showing that the simple marginalization over the nuisance parameters might lead to wrong estimates on the cosmology. The method is applied to obtain forecasts for these effects on the upcoming J-PAS Luminous Red Galaxies data and is employed to obtain constraints on the Hubble parameter (H0), the dark matter density (c) and two parameters of the equation of state of dark energy (w0 and wa). / Nos próximos anos, diversos levantamentos de galáxias planejam lançar uma quantidade considerável de novos dados, marcando, assim, o início da chamda era da cosmologia de precisão. Cada levantamento possui suas próprias limitações geométricas, que manifestam- se perante os dados na forma de uma função de seleção, ou seja, uma distribuição espacial de cada tipo de galáxia. A partir de um mapa de galáxias (real ou simulado), o principal objetivo desse trabalho foi descobrir como a função de seleção afeta alguns dos parâmetros cosmológicos que podem ser obtidos através de dados futuros de estrutura em larga escala. Portanto, propôs-se um método de Monte-Carlo com cadeias de Markov para estudar os efeitos decorrentes da inclusão dos parâmetros da função de seleção como nuisance parameters. Esse método consiste em combinar simulações de catálogos de galáxias, usando um espectro de potências teórico da matéria junto com um estimador ótimo, a fim de obter ambos espectros (teórico e observacional) e compará-los em uma verossimilhança Gaussiana-multivariada. O método de Monte-Carlo provou-se robusto e capaz de demonstrar os efeitos da função de seleção sobre as estimativas dos parâmetros cosmológicos, comprovando que o simples ato de marginalizar sobre os parâmetros não desejados pode levar a estimativas equivocadas na cosmologia em quesão. Finalmente, esse método foi aplicado nas estimações do parâmetro de Hubble (H0), na densidade de matéria escura (c) e em dois dos parâmetros da equação de estado da energia escura (w0 e wa) com o objetivo de prever tais efeitos para dados futuros do levantamento J-PAS com Galáxias Vermelhas Luminosas.
3

Cosmological analysis of optical galaxy clusters /

Rivera Echeverri, José David. January 2017 (has links)
Orientador: Maria Cristina Batoni Abdalla Ribeiro / Coorientador: Filipe Batoni Abdalla / Banca: Filipe Batoni Abdalla / Banca: Laerte Sodré Júnior / Banca: Marcos Vinícius Borges Teixeira Lima / Banca: Martín Makler / Resumo: Os aglomerados de galáxias são os maiores objetos ligados que observamos no universo. Dado que as galáxias são consideradas traçadores de matéria escura, os aglomerados de galáxias nos permitem estudar a formação e a evolução de estruturas em grande escala. As contagens do número de aglomerados de galáxias são sensı́veis ao modelo cosmológico, portanto são usadas como observáveis para restringir os parâmetros cosmológicos. Nesta tese estudamos os aglomerados de galáxias óticos. Iniciamos o trabalho analisando a degradação da precisão e a exatidão no desvio para o vermelho fotométrico estimado através de métodos de aprendizagem de máquina (machine learning) ANNz2 e GPz. Além do valor singular do desvio para o vermelho fotométrico clássico (isto é, valor médio ou máximo da distribuição), implementamos um estimador baseado em uma amostragem de Monte Carlo usando a função de distribuição cumulativa. Mostramos que este estimador para o algoritmo ANNz2 apresenta a melhor concorância com a distribuição do desvio para o vermelho espectroscópico, no entanto, uma maior dispersão. Por outro lado, apresentamos o buscador de aglomerados VT-FOFz, o qual combina as técnicas de Voronoi Tessellation e Friends of Friends. Estimamos seu desempenho através de catálogos simulados. Calculamos a completeza e a pureza usando uma região de cilindrica no espaço 2+1 (ou seja, coordenadas angulares e desvio para o vermelho). Para halos maciços e aglomerados com alta riqueza, obtemos valores elevados de ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The galaxy clusters are the largest bound objects observed in the universe. Given that the galaxies are considered as tracers of dark matter, the galaxy clusters allow us to study the formation and evolution of large-scale structures. The cluster number counts are sensitive to the cosmological model, hence they are used as probes to constrain the cosmological parameters. In this work we focus on the study of optical galaxy clusters. We start analyzing the degradation of both precision and accuracy in the estimated photometric redshift via ANNz2 and GPz machine learning methods. In addition to the classical singular value for the photometric redshift (i.e., mean value or maximum of the distribution), we implement an estimator based on a Monte Carlo sampling by using the cumulative distribution function. We show that this estimator for the ANNz2 algorithm presents the best agreement with the distribution for spectroscopic redshift, nonetheless a higher scattering. On the other hand, we present the VT-FOFz cluster finder, which combines the techniques Voronoi Tessellation and Friends of Friends. Through mock catalogs, we estimate its performance. We compute the completeness and purity by using a cylindrical region in the 2+1 space (i.e., angular coordinates and redshift). For massive haloes and clusters with high richness, we obtain high values of completeness and purity. We compare the detected galaxy clusters via the VT-FOFz cluster finder with the redMaPPer SDSS DR8 cluster catalog. We recover ∼ 90% of the galaxy clusters of the redMaPPer catalog until the redshift z ≈ 0.33 considering brighter galaxies with r < 20.6. Finally, we perform a cosmological forecasting by using a MCMC method, for a flat wCDM model through galaxy cluster abundance. The fiducial model is a flat ΛCDM Universe. The effects due to the estimated observable mass and (Complete abstract click electronic access below) / Doutor
4

Melhorias na predição da estrutura de larga escala do universo por meio de teorias efetivas de campo / Towards Precise Large Scale Structure Predictions with Effective Field Theories

Rubira, Henrique 10 August 2018 (has links)
Com os próximos grandes projetos the observação do Universo, a cosmologia entrará em uma era de alta precisão de medidas. Novos dados trarão um novo entendimento da evolução do Universo, seus principais componentes e do comportamento da gravi- dade. Sendo assim, é fundamental também ter uma boa predição teórica para a formação de estrutura de larga escala em regime não-linear. A melhor maneira de resolver as equações hidrodinâmicas que descrevem o nosso universo é por meio de simulações cosmológicas na rede. Entretando, estas contém desafios, como a correta inclusão de física bariônica e a diminuição do alto tempo computacional. Uma outra abordagem muito usada é o cálculo das funções de cor- relação por meio de métodos perturbativos (em inglês, Standard Perturbation Theory, ou SPT). Entretanto, esta contém problemas variados: pode não convergir para algu- mas cosmologias e, caso convirja, não há certeza de convergência para o resultado correto. Além disso, há uma escala privilegiada nos limites integrais que envolvem o método perturbativo. Nós calculamos o resultado por esse método até terceira ordem e mostramos que o termo de terceira ordem é ainda maior que o de 2-loops e 3-loops. Isso evidencia alguns problemas descritos com o método perturbativo. O método de Teorias Efetivas de Campo aplicado ao estudo de LSS busca corrigir os problemas da SPT e, desta forma, complementar os resultados de simulações na rede. Em outras áreas da física, como a Cromodinâmica Quântica de baixas energias, EFTs também são usadas como um complemento a essas simulações na rede. EFTs melhoram a predição do espectro de potência da matéria por meio da inclusão dos chamados contra-termos, que precisam ser fitados em simulações. Estes contratermos, que são parâmetros livres, contém importante informação sobre como a física em pequenas escalas afeta a física nas escalas de interesse. Explicaremos os resultados para a predição em 3-loops de EFT, trabalho inédito. É possível usar as EFTs também no problema de conectar a campo de matéria com outros traçadores, como os halos e as galáxias, chamado de bias. Com as EFTs podemos construir uma base completa de operadores para parametrizar o bias. Será explicado como utilizar esses operadores para melhorar a predição do bias em escalas não-lineares. Serão calculados esses termos de EFT em simulações. Também será mostrado como renormalizar o bias em coordenadas de Lagrange. Por fim, será explicada outra importante aplicação das EFTs em cosmologia, mais especificamente em teorias de inflação. EFTs parametrizam desvios nas teorias de um campo único no chamado regime de slow-roll. / With future cosmological surveys, cosmology will enter in the precision era. New data will improve the constraints on the standard cosmological model enhancing our knowledge about the universe history, its components and the behavior of gravity. In this context, it is vital to come up with precise theoretical predictions for the formation of large-scale structure beyond the linear regime. The best way of solving the fluid equations that describe the large-scale universe is through lattice simulations, which faces difficulties in the inclusion of accurate baryonic physics and is very computationally costly. Another approach is the theoreti- cal calculation of the correlation statistics through the perturbative approach, called Standard Perturbation Theory (SPT). However, SPT has several problems: for some cosmologies, it may not converge and even when it converges, we cannot be sure it converges to the right result. Also, it contains a special scale that is the loop momenta upper-bound in the integral. In this work, we show results for the 3-loop calculation. The term of third order is larger than the terms of 2-loops and 3-loops, making explicit SPT problems. In this work, we describe the recent usage of Effective Field Theories (EFTs) on Large Scale Structure problems to correct SPT issues and complement cosmological simulations. EFTs are used in other areas of physics, such as low energy QCD, serving as a complement to lattice calculations. EFT improves the predictions for the matter power spectrum and bispectrum by adding counterterms that need to be fitted. The free parameters, instead of being a problem, bring relevant information about how the small-scale physics affects the scales for which we are trying to make statistical predictions. We show the calculation of the 3-loop EFT counterterms. EFTs are also used to explain main points connecting the matter density field with tracers like galaxies and halos. EFTs highlighted how to construct a complete basis of operators that parametrize the bias. We explain how we can use EFT to improve the bias prediction to non-linear scales. We compute the non-linear halo-bias by fitting the bias parameters in simulations. We also show the EFT renormalization in Lagrangian coordinates. Finally, we explain another critical EFT application to cosmology: in primordial physics. It can be used to parametrize deviations to the slow-roll theory within the inflationary paradigm.
5

Melhorias na predição da estrutura de larga escala do universo por meio de teorias efetivas de campo / Towards Precise Large Scale Structure Predictions with Effective Field Theories

Henrique Rubira 10 August 2018 (has links)
Com os próximos grandes projetos the observação do Universo, a cosmologia entrará em uma era de alta precisão de medidas. Novos dados trarão um novo entendimento da evolução do Universo, seus principais componentes e do comportamento da gravi- dade. Sendo assim, é fundamental também ter uma boa predição teórica para a formação de estrutura de larga escala em regime não-linear. A melhor maneira de resolver as equações hidrodinâmicas que descrevem o nosso universo é por meio de simulações cosmológicas na rede. Entretando, estas contém desafios, como a correta inclusão de física bariônica e a diminuição do alto tempo computacional. Uma outra abordagem muito usada é o cálculo das funções de cor- relação por meio de métodos perturbativos (em inglês, Standard Perturbation Theory, ou SPT). Entretanto, esta contém problemas variados: pode não convergir para algu- mas cosmologias e, caso convirja, não há certeza de convergência para o resultado correto. Além disso, há uma escala privilegiada nos limites integrais que envolvem o método perturbativo. Nós calculamos o resultado por esse método até terceira ordem e mostramos que o termo de terceira ordem é ainda maior que o de 2-loops e 3-loops. Isso evidencia alguns problemas descritos com o método perturbativo. O método de Teorias Efetivas de Campo aplicado ao estudo de LSS busca corrigir os problemas da SPT e, desta forma, complementar os resultados de simulações na rede. Em outras áreas da física, como a Cromodinâmica Quântica de baixas energias, EFTs também são usadas como um complemento a essas simulações na rede. EFTs melhoram a predição do espectro de potência da matéria por meio da inclusão dos chamados contra-termos, que precisam ser fitados em simulações. Estes contratermos, que são parâmetros livres, contém importante informação sobre como a física em pequenas escalas afeta a física nas escalas de interesse. Explicaremos os resultados para a predição em 3-loops de EFT, trabalho inédito. É possível usar as EFTs também no problema de conectar a campo de matéria com outros traçadores, como os halos e as galáxias, chamado de bias. Com as EFTs podemos construir uma base completa de operadores para parametrizar o bias. Será explicado como utilizar esses operadores para melhorar a predição do bias em escalas não-lineares. Serão calculados esses termos de EFT em simulações. Também será mostrado como renormalizar o bias em coordenadas de Lagrange. Por fim, será explicada outra importante aplicação das EFTs em cosmologia, mais especificamente em teorias de inflação. EFTs parametrizam desvios nas teorias de um campo único no chamado regime de slow-roll. / With future cosmological surveys, cosmology will enter in the precision era. New data will improve the constraints on the standard cosmological model enhancing our knowledge about the universe history, its components and the behavior of gravity. In this context, it is vital to come up with precise theoretical predictions for the formation of large-scale structure beyond the linear regime. The best way of solving the fluid equations that describe the large-scale universe is through lattice simulations, which faces difficulties in the inclusion of accurate baryonic physics and is very computationally costly. Another approach is the theoreti- cal calculation of the correlation statistics through the perturbative approach, called Standard Perturbation Theory (SPT). However, SPT has several problems: for some cosmologies, it may not converge and even when it converges, we cannot be sure it converges to the right result. Also, it contains a special scale that is the loop momenta upper-bound in the integral. In this work, we show results for the 3-loop calculation. The term of third order is larger than the terms of 2-loops and 3-loops, making explicit SPT problems. In this work, we describe the recent usage of Effective Field Theories (EFTs) on Large Scale Structure problems to correct SPT issues and complement cosmological simulations. EFTs are used in other areas of physics, such as low energy QCD, serving as a complement to lattice calculations. EFT improves the predictions for the matter power spectrum and bispectrum by adding counterterms that need to be fitted. The free parameters, instead of being a problem, bring relevant information about how the small-scale physics affects the scales for which we are trying to make statistical predictions. We show the calculation of the 3-loop EFT counterterms. EFTs are also used to explain main points connecting the matter density field with tracers like galaxies and halos. EFTs highlighted how to construct a complete basis of operators that parametrize the bias. We explain how we can use EFT to improve the bias prediction to non-linear scales. We compute the non-linear halo-bias by fitting the bias parameters in simulations. We also show the EFT renormalization in Lagrangian coordinates. Finally, we explain another critical EFT application to cosmology: in primordial physics. It can be used to parametrize deviations to the slow-roll theory within the inflationary paradigm.
6

Primordial non-Gaussianities: Theory and Prospects for Observations / Não-Gaussianidades Primordiais: Teoria e Perspectivas para Observações

Guandalin, Caroline Macedo 28 August 2018 (has links)
Early Universe physics leaves distinct imprints on the Cosmic Microwave Background (CMB) and Large-Scale Structure (LSS). The current cosmological paradigm to explain the origin of the structures we see in the Universe today (CMB and LSS), named Inflation, says that the Universe went through a period of accelerated expansion. Density fluctuations that eventually have grown into the temperature fluctuations of the CMB and the galaxies and other structures we see in the LSS come from the quantization of the scalar field (inflaton) which provokes the accelerated expansion. The most simple inflationary model, which contains only one slowly-rolling scalar field with canonical kinetic term in the action, produces a power-spectrum (Fourier transform of the two-point correlation function) approximately scale invariant and an almost null bispectrum (Fourier transform of the three-point correlation function). This characteristic is called Gaussianity, once random fields that follow a normal distribution have all the odd moments null. Yet, more complex inflationary models (with more scalar fields and/or non-trivial kinetic terms in the action, etc) and possible alternatives to inflation have a non-vanishing bispectrum which can be parametrized by a non-linearity parameter f_NL, whose value differs from model to model. In this work we studied the basic ingredients to understand such statements and focused on the observational evidences of this parameters and how the current and upcoming galaxy surveys are able to impose constraints to the value of f_NL with a better accuracy, through the multi-tracer technique, than those obtained by means of CMB measurements. / A física do Universo primordial deixa sinais distintos na Radiação Cósmica de Fundo (CMB) e Estrutura em Larga Escala (LSS). O paradigma atual da cosmologia explica a origem das estruturas que vemos hoje (CMB e LSS) através da inflação, teoria que diz que o Universo passou por um período de expansão acelerada. As flutuações de densidade que eventualmente crescem, dando origem às flutuações de temperatura da CMB, às galáxias e outras estruturas que vemos na LSS, provém da quantização do campo escalar (inflaton) que provoca a tal expansão acelerada. O modelo inflacionário mais simples, o qual contém um único campo escalar nas condições de rolamento lento e termo cinético canônico da ação, possui o espectro de potências (transformada de Fourier da função de correlação de dois pontos) aproximadamente invariante de escala e o bispectro (transformada de Fourier da função de correlação de três pontos) aproximadamente nulo. Tal característica é conhecida por Gaussianidade, uma vez que campos aleatórios cuja distribuição é uma normal tem todas as funções de correlação de ordem ímpar nulas. Contudo, modelos inflacionários mais complexos (mais campos escalares, termos cinéticos não-triviais na ação, etc) e alternativas possíveis à inflação possuem um bispectro não nulo, o qual pode ser parametrizado através do parâmetro de não-linearidade f_NL, cujo valor difere de modelo para modelo. Neste trabalho estudamos os ingredientes básicos para entender tais afirmações e focamos nas evidências observacionais desse parâmetro e como os levantamentos de galáxias atuais e futuros podem impor restrições ao valor de f_NL com uma precisão maior, através da técnica de múltiplos traçadores, do que aquelas obtidas com medidas da CMB.
7

Primordial non-Gaussianities: Theory and Prospects for Observations / Não-Gaussianidades Primordiais: Teoria e Perspectivas para Observações

Caroline Macedo Guandalin 28 August 2018 (has links)
Early Universe physics leaves distinct imprints on the Cosmic Microwave Background (CMB) and Large-Scale Structure (LSS). The current cosmological paradigm to explain the origin of the structures we see in the Universe today (CMB and LSS), named Inflation, says that the Universe went through a period of accelerated expansion. Density fluctuations that eventually have grown into the temperature fluctuations of the CMB and the galaxies and other structures we see in the LSS come from the quantization of the scalar field (inflaton) which provokes the accelerated expansion. The most simple inflationary model, which contains only one slowly-rolling scalar field with canonical kinetic term in the action, produces a power-spectrum (Fourier transform of the two-point correlation function) approximately scale invariant and an almost null bispectrum (Fourier transform of the three-point correlation function). This characteristic is called Gaussianity, once random fields that follow a normal distribution have all the odd moments null. Yet, more complex inflationary models (with more scalar fields and/or non-trivial kinetic terms in the action, etc) and possible alternatives to inflation have a non-vanishing bispectrum which can be parametrized by a non-linearity parameter f_NL, whose value differs from model to model. In this work we studied the basic ingredients to understand such statements and focused on the observational evidences of this parameters and how the current and upcoming galaxy surveys are able to impose constraints to the value of f_NL with a better accuracy, through the multi-tracer technique, than those obtained by means of CMB measurements. / A física do Universo primordial deixa sinais distintos na Radiação Cósmica de Fundo (CMB) e Estrutura em Larga Escala (LSS). O paradigma atual da cosmologia explica a origem das estruturas que vemos hoje (CMB e LSS) através da inflação, teoria que diz que o Universo passou por um período de expansão acelerada. As flutuações de densidade que eventualmente crescem, dando origem às flutuações de temperatura da CMB, às galáxias e outras estruturas que vemos na LSS, provém da quantização do campo escalar (inflaton) que provoca a tal expansão acelerada. O modelo inflacionário mais simples, o qual contém um único campo escalar nas condições de rolamento lento e termo cinético canônico da ação, possui o espectro de potências (transformada de Fourier da função de correlação de dois pontos) aproximadamente invariante de escala e o bispectro (transformada de Fourier da função de correlação de três pontos) aproximadamente nulo. Tal característica é conhecida por Gaussianidade, uma vez que campos aleatórios cuja distribuição é uma normal tem todas as funções de correlação de ordem ímpar nulas. Contudo, modelos inflacionários mais complexos (mais campos escalares, termos cinéticos não-triviais na ação, etc) e alternativas possíveis à inflação possuem um bispectro não nulo, o qual pode ser parametrizado através do parâmetro de não-linearidade f_NL, cujo valor difere de modelo para modelo. Neste trabalho estudamos os ingredientes básicos para entender tais afirmações e focamos nas evidências observacionais desse parâmetro e como os levantamentos de galáxias atuais e futuros podem impor restrições ao valor de f_NL com uma precisão maior, através da técnica de múltiplos traçadores, do que aquelas obtidas com medidas da CMB.

Page generated in 0.08 seconds