Spelling suggestions: "subject:"estuary"" "subject:"stuary""
31 |
Production ecology of green macroalgal mats (Enteromorpha spp.) in the Coos Bay, Oregon estuaryPregnall, Alexander Marshall January 1983 (has links)
Typescript
Thesis (Ph. D.)--University of Oregon, 1983
Includes vita and abstract
Bibliography: leaves 134-145
Another copy on microfilm is located in Archives
|
32 |
Macrobenthic community structure across an inter- and subtidal gradient in a mangrove estuaryGroenewald, Christoff J January 2010 (has links)
Macrozoobenthic community structure and composition was investigated along a subtidal-intertidal gradient in the Mngazana Estuary. Six transects were sampled between the spring high water mark (HWST) and the bottom of the river channel in the lower estuary. Fifteen replicate samples were collected along each transect using a Van Veen type grab (211 cm2 bite) during each of three sampling sessions. Samples were sieved through a 500 μm mesh bag and the invertebrates stored in bottles for further analysis in the laboratory. Additional grab samples were collected for sediment particle size analysis and organic matter. Physical variables measured at each transect included: salinity, temperature, dissolved oxygen, depth, pH, percentage mud, organic content and turbidity. Sediment compactness was measured at all intertidal transects and additional sediment samples were collected at mid shore and high shore transects for percentage water content analysis. A total of 104 species were recorded along the intertidal-subtidal gradient in the sampling area. Species richness was higher in the subtidal zone compared to the intertidal zone and polychaetes numerically dominated the macrozoobenthic community at most transects, during all three sessions. At high shore transects the community was characterised by having fewer species, consisting mostly of brachyurans, polychaetes and gastropods. Shannon diversity index (H’) was generally higher for subtidal transects (x¯ = 2.3; range: 2.8 to 1) than for intertidal transects (x¯ = 1.4; range: 2.2 to 0.6) indicating that the distribution of individuals among species in the intertidal zone experienced greater variability. Results for Hill’s numbers followed the same trend as Shannon diversity with subtidal communities mostly consisting of abundant species followed by very abundant species. Intertidal communities generally exhibited lower numbers of abundant and very abundant species. Sedimentary characteristics played a major role in structuring benthic communities in comparison to other physico-chemical variables. Organic content and mud content of the substrate were identified as important factors influencing community patterns observed along the subtidal-intertidal gradient. In addition, sediment compactness and water content of the substrate was found to influence intertidal community structure. Subtidal community structure possibly had a greater dependence on seasonal variations in abiotic and/or biotic factors. Cluster dendrograms used in conjunction with MDS ordination mapping revealed that macrozoobenthic communities were generally distinct between high shore intertidal transects iii and subtidal transects. Most species exhibited a broad spatial distribution along the subtidal-intertidal gradient with mid and high shore transects being the exception. Most species also exhibited marked shifts in abundance and this was especially noticeable at the transition between the subtidal and intertidal zone. Two polychaete species, Prionospio sexoculata and Capitella capitata, were very abundant species and featured amongst the most numerically dominant species collected during each sampling session.
|
33 |
The contribution of submerged macrophytes and macroalgae to nutrient cycling in the Great Brak EstuaryHuman, Lucienne Ryno Daniel January 2013 (has links)
An ecological reserve study by the Department of Water Affairs on the Great Brak Estuary stated that there was a need to determine how much nitrogen and phosphorus was flowing through the estuary as well as how effective the macroalgae were at removing N and P. The objective of this study was to investigate the physico-chemical characteristics in the estuary and the influence of these on the submerged macrophytes and macroalgae. A nutrient budget for the estuary was developed in order to quantify the contribution of the submerged macrophytes and macroalgae relative to other contributing sources. The Wolwedans Dam located 3 km upstream from the estuary has reduced the amount of freshwater flow to the estuary by as much as 56 percent. The estuary has been allocated 2 x 106 m3 per annum of freshwater (ecological reserve) that is used to breach the mouth once or twice a year in spring or summer. Even though this water has been made available it is not sufficient to flush the estuary. Reduced flushing has led to an accumulation of organic matter and degradation in the water quality. Physico-chemical measurements between September 2010 and July 2012 showed that dissolved oxygen values were generally below 6 mg l-1. The average NH4+ concentration in the estuary was 7 μM and increased with depth to 12 μM at 2 m depths. Concentrations >45 μM were found in February and April 2011 at the 5 m deep hole at 3.4 km upstream. Negative correlations between dissolved oxygen and NH4+ during November 2010, February 2011, April 2011 and July 2011 (r = -0.68; -0.67; -0.63; -0.96) indicated that remineralisation of organic matter had occurred. Soluble reactive phosphorus (SRP) followed a similar trend to the NH4+ and was generally below 1 μM in the water column for most months, and had peaks at 1.0 km and 3.4 km in the bottom water. The abundance of submerged macrophytes and macroalgae below the N2 bridge were mostly influenced by mouth state and river inflow. During the closed phase the dominant macroalga Cladophora glomerata had an area cover ranging from 3000 to 6000 m2 while Zostera capensis and Ruppia cirrhosa covered an area of 2000 to 3500 m2 and 1500 to 2900 m2, respectively. After an artificial breach in February 2011, water drained out of the estuary leaving the alga stranded on the marshes and as the flood tide entered the macroalga was once again redistributed in the lower reaches. The alga utilised the available nutrients in the water column and expanded its area cover from 35000 m2 in February 2011 to 64000 m2 in March 2011. However, after the floods in June 2011, Cladophora glomerata had been washed out of the system while the submerged macrophytes responded positively extending their area cover. By comparing the artificial breach with the natural breach, and the effect on the estuary, an important observation was highlighted. Increasing the current allocated ecological reserve, and using a larger volume of water to breach the mouth artificially, would result in better scouring of sediment and associated organic matter out of the estuary. This would enable better oxygenation of the water column, reduce remineralisation and minimise algal blooms.
|
34 |
Microalgal biomass and distribution in the Mngazi and Mngazana EstuariesNgesi, Hlekani Ntombizakithi January 2010 (has links)
The present study was undertaken in the temporarily open/closed Mngazi and permanently open Mngazana estuaries, located on the subtropical east coast of South Africa. The results from this research will assist decision makers in the freshwater management of these systems. Intertidal and subtidal benthic chlorophyll a concentrations, water column chlorophyll a, nutrients and several physico-chemical parameters were measured between June 2002 and November 2003. The objective of this study was to determine if the presence of freshwater in the estuaries had an effect on the microalgae of both estuaries. Five sites were sampled in the Mngazi Estuary and 14 sites were sampled in the Mngazana Estuary. The average water column chlorophyll a was significantly higher (p<0.05) in the Mngazana Estuary (surface 7.8 ± 0.7 μg.l-1, bottom 6.4 ± 0.7 μg.l-1) compared to the Mngazi Estuary (surface 4.9 ± 1.2 μg.l-1, bottom 7.3 ± 1.5 μg.l-1). There was no evidence of an REI (river-estuary interface) zone in areas where the water column chlorophyll a concentrations were high even during open mouth conditions in the Mngazi Estuary. The REI is that area where salinity is less than 10 ppt and is characterized by high water column productivity. Even though both systems received some freshwater during the summer periods, this was not enough to stimulate phytoplankton growth and nutrient availability seems to be the major factor limiting phytoplankton in these systems. Flagellates and diatoms were the dominant phytoplankton groups in both estuaries during the entire sampling session. The relative abundance of the different phytoplankton groups did not show differences between sites. The relative abundance of flagellates was in most cases greater than 60% and diatoms made up the remainder. The average benthic chlorophyll a was higher in the Mngazana Estuary (intertidal 24 ± 6 μg.g-1 subtidal 15.2 ± 3 μg.g-1) compared to the Mngazi Estuary (intertidal 15.3 ± 4.3 μg.g-1 subtidal 5.4 ± 1.6 μg.g-1). Regions with high benthic chlorophyll a concentrations had high sediment organic content. Sediment organic content was higher in the Mngazana Estuary (1 percent - 8 percent) compared to the Mngazi Estuary (4 percent – 6.8 percent). The sites situated on the Main Channel had on average significantly higher (p<0.05) benthic chlorophyll a biomass compared to Creek 1 and Creek 2 in the Mngazana Estuary. Peaks in benthic chlorophyll a concentrations occurred in the intertidal sediments in Creek 1 (50.4 ± 13.4 μg.g-1) and Creek 2 (57.4 ± 1.4 μg.g-1) in the Mngazana Estuary, the peaks occurred in winter during a period of low freshwater inflow into the estuary. Microphytobenthic biomass measured in the Mngazi Estuary is among the lowest values reported in the literature for temporarily open/closed estuaries. Statistical 4 analysis showed no significant difference between benthic chlorophyll a during the different mouth conditions and sampling sessions in the Mngazi Estuary. Microalgal responses in the Mngazana Estuary were similar to those observed in other permanently open marine dominated estuaries. In the temporarily open/closed Mngazi Estuary microalgal characteristics were different to that of other temporarily open/closed estuaries probably because the estuary was only sampled in the open and semi-closed state.
|
35 |
Babbage River delta and lagoon : hydrology and sedimentology of an Arctic estuarine systemForbes, Donald Lawrence January 1981 (has links)
Inputs, transfer processes, and storage characteristics of water and sediment have been investigated in a 40-km² estuarine system on the central Yukon coast. The setting is transgressive, microtidal, and high-latitude (69°N). The Babbage Estuary system can be subdivided into fluvial, tidal-distributary, delta-plain, intertidal, lagoon,
marginal-supratidal, and barrier subsystems, each associated with one or more distinctive depositional environments and characteristic lithofacies assemblages. The structure of the system has been examined in terms of links between subsystems and overall system response to input perturbations. Although the propagation of tide and surge within the estuary may be treated as a quasi-linear stochastic process, transfers of fluvial water and sediment through the system are highly non-linear. Furthermore, the parameters of the system change dramatically on an annual cycle.
Inputs and associated system responses are dominated in the short run by seasonal- and synoptic-scale variance, the former reflecting major seasonal adjustments in the phase distribution, circulation process, iand input regime of the estuary. The annual salinity cycle, with a range of at least 60 ppt, exhibits a short reaction and long relaxation response to major snowmelt runoff inputs in May or June, when salt water
is flushed completely out of the estuary. Wind-generated waves are effectively absent from the system during 8-9 months of the year, but play a major role during the open-water season. Although direct transport of sediment by ice is relatively unimportant, ice effects are pervasive; they include, in addition to restriction of winter runoff and surface wave generation, creation of hypersaline conditions, control of the sedimentologically important flood events on deltaic supratidal flats, enhanced rates of coastal recession due to thermal degradation of ground ice, and production of distinctive thermokarst morphology on supratidal surfaces. Water level, storage volume, salinity, and suspended sediment series during the open-water season in the lagoon are dominated by synoptic-scale wind effects. In the delta, the major synoptic-scale anomalies of sediment concentration are related to storm runoff. Fluvial clastic sediment inputs to the estuary exceed 10⁸ kg A⁻¹ almost an order of magnitude greater than the estimated littoral transport input. More than 97% of the fluvial input may occur in June; of this, approximately half may be exported directly from the system.
At long time scales, the estuarine system has been dominated by rising sea level and coastal recession; Holocene climatic fluctuations may also have been important. A transgressive sequence has developed, including various distinctive features, notably the absence or limited development of aeolian, backbarrier-margin, tidal-delta, and intertidal marsh facies, a largely afaunal intertidal
component, and deltaic deposits with poorly developed levees and abundant lake basins. The basal fluvial component includes a sinuous gravel channel assemblage of a hitherto poorly documented type. The Babbage Estuary barrier sequence is primarily transgressive, but incorporates localized elements of progradational and inlet-migration models. Examples of major transgressive, progradational, and inlet-fill barrier sequences occur in close proximity on the central Yukon coast. / Arts, Faculty of / Geography, Department of / Graduate
|
36 |
Ecological effects of Ulva lactuca L. in Avon-Heathcote EstuaryMurphy, Gerry January 2006 (has links)
Macroalgal blooms are increasing world-wide and have negative effects on benthic invertebrates and sediments. These include loss of species diversity and development of hostile sediment environments. This thesis considers ecological effects of Ulva lactuca L., and its mechanical removal on benthic invertebrates and sediments in Avon-Heathcote Estuary, New Zealand. Benthic communities comprised 34 species from 12 groups recorded from seven sites during seasonal general surveys. Dominant groups at each site were Gastropoda and Bivalvia. The most abundant species were Austrovenus stutchburyi, Micrelenchus tenebrosus and Amphibola crenata. Community composition varied significantly between sites, and there were significant site-specific differences in abundances of most species between winter and summer. U. lactuca had the greatest seasonal variation. Several species correlated with U. lactuca biomass, and the strength of correlation for different species varied between sites. There were seasonal changes in sediment physico-chemical variables between sites with greatest change in the silt/clay fraction. The sediment variables silt/clay fraction, dissolved oxygen and temperature correlated with seasonal changes of patterns in benthic community assemblages. A similar study was carried out by Bressington in 2003. In both studies, Bivalvia and Gastropoda were the most abundant groups, with Gastropoda having a higher, and Bivalvia a lower, proportion in the present study compared with 2003. Summer communities were significantly different between the two studies. Compared with 2003 there were higher percentages of sediment pore water and volatile solids present in 2005. Experimental removal of U. lactuca was conducted by mechanical broom at two sites: an open, exposed central sand flat, and McCormacks Bay, a shallow, sheltered mud flat. Removing U. lactuca had several immediate effects. These included a significant decrease in abundance of mobile epifauna (Micrelenchus tenebrosus and Zeacumantus subcarinatus) and an increase in abundance of infauna, including Arthritica bifurca and Austrovenus stutchburyi. There was no effect of U. lactuca removal on Austrovenus stutchburyi condition and 46 days following removal, invertebrate abundances approached pre-removal levels at each site. U. lactuca removal also caused short-term increases in dissolved oxygen and temperature of pore water. The greatest visual impact of removing U. lactuca was to sediments in McCormacks Bay from trampling. It was concluded that the variables having the greatest effect on seasonal species distribution and abundance at each site were temperature and sediment grain size. Differences between the present study and the study in 2003 were due to differences in sampling procedure mainly due to the two different quadrat sizes. Greater accuracy in representing long-term changes in ecosystems would be achieved by using standard sampling protocols. Removal of U. lactuca by mechanical broom was effective and had low impact on benthic invertebrates and physico-chemical variables, but it should be used only in sandy habitats because of severe disturbance to soft-sediment environments. Options for management and control of U. lactuca in Avon-Heathcote Estuary are discussed.
|
37 |
The relationship between the biochemical oxygen demand and total suspended solids concentration in the tidal River OuseChester, Michael Andrew January 1999 (has links)
No description available.
|
38 |
Effects of allochthonous organic matter and iron on plankton community functioning and annual carbon cycling in a subarctic estuary under winter conditions.Verheijen, Hendricus January 2016 (has links)
High winter respiration has been observed in a subarctic estuary with high levels of organic matter inputs, while winter is generally thought to be a non-productive season. We constructed an oxygen and carbon budget of the system to validate the high respiration rate, including the resulting low production-to-respiration ratio, and to identify important carbon and energy sources. Measurement data of production and respiration parameters from running monitoring programs were used. Furthermore, we set up a microcosm experiment in order to study effects of iron increases by riverine organic matter inputs. The carbon balance of this subarctic estuary shows a small deficiency of carbon on an annual basis, but is able to explain how winter respiration is fueled by carbon fixed in the autumnal season and inputs of riverine material. Also, the balance calculation was able to predict oxygen deficiencies on a seasonal basis. The effect of riverine organic matter on biological activity was clearly present, but iron did not appear to affect responses in primary or secondary producers. Additional studies will be needed to fully understand the role of iron additions to marine microbial communities, particularly focusing on fractioning of iron and organic matter species.
|
39 |
Characterization of the bed, critical boundary shear stress, roughness, and bedload transport in the Connecticut River EstuaryValentine, Kendall January 2015 (has links)
Thesis advisor: Gail C. Kineke / This study characterizes the bed of the Connecticut River estuary in terms of grain size and bedforms, and relates these to river discharge, tidal currents, and sediment transport. Over four field excursions, sediment cores were collected, in addition to bathymetry surveys, and water column measurements. A three-dimensional circulation and sediment transport model calculated boundary shear stress over the same time. The bed of the estuary is composed mostly of sand, with small amounts of fine sediments. Deposition of fine sediments is limited by the landward extent of the salt intrusion. Large bedforms are oriented seaward. The critical shear stress for the median grain size is exceeded each tidal cycle. Bedload transport is dominantly seaward during high discharge conditions, but varies during low discharge. Bathymetry surveys from previous studies and this study show consistent bedform fields over 25 years. Bedforms observed in the field reflect typical conditions rather than extreme events. / Thesis (MS) — Boston College, 2015. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
40 |
Thread Drifting by Juvenile Bivalves in the Coos Bay Estuary, Oregon: Species Identification and the Influence of Estuarine Hydrodynamics and Diel MigrationDlouhy, Brittney, Dlouhy, Brittney January 2012 (has links)
From September 2009 to July 2011 I collected vertically stratified zooplankton samples and recorded estuarine water parameters on a monthly basis in the Coos Bay estuary, Oregon during flood and ebb tides. I identified five taxa of juvenile bivalves in the plankton:
|
Page generated in 0.1974 seconds