Spelling suggestions: "subject:"ctching selectivity"" "subject:"crutching selectivity""
1 |
Etch rate modification by implantation of oxide and polysilicon for planar double gate MOS fabricationCharavel, Rémy 31 January 2007 (has links)
In the context of transistor size miniaturization the motivation of this
work was focused on the fabrication process of planar double gate devices.
We proposed in this work three process flows based on the use of buried
mask which could allow the fabrication of self-aligned planar double gate
transistors.
The novel concept of buried mask consists into modifying the etch rate of
a buried polysilicon or oxide layer. This etch rate modification being
defined by ion implantation, etch stop or scacrificial zones aligned with
the implantation mask can thus be fabricated. This technique solve the
alignment of the front and back gate.
Ion implantation causes damages to the implanted target, and is used to
dope semiconductor material. If the implanted atoms have a small radii
they can induce stress to the implanted lattice. These three consequences
of ion implantation, damage, doping and stress are used to modify the etch
rate of oxide and polysilicon. High etching selectivity are reached, which
allow the fabrication of a localized buried sacrificial or etch stop zone,
called buried mask. The definition of the buried mask being done by ion
implantation, it opens the possibility to fabricate a buried mask aligned
with the implantation mask.
Although some more work has to be invested to fabricate planar double gate
MOS using buried mask in polysilicon, this concept of buried mask, which
could also be called anisotropic wet and vapor etching, is foreseen as a
very promising technique in MEMS micromachining and for bio sensor
applications.
|
Page generated in 0.0654 seconds