• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • Tagged with
  • 21
  • 21
  • 21
  • 11
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation, characterization, and evaluation of Mg-Al mixed oxide supported nickel catalysts for the steam reforming of ethanol

Coleman, Luke James Ivor 18 January 2008 (has links)
The conversion of ethanol to hydrogen or syngas can be achieved by reacting ethanol with water via steam reforming, CH3CH2OH + (1-x)H2O = (4-x)H2 + (2-x)CO + xCO2 (R.1) CH3CH2OH + H2O = 4H2 + 2CO (R.2) CO + H2O = H2 + CO2 (R.3) Ideally, the ethanol steam reforming reaction can achieve a hydrogen yield of 6 moles of hydrogen per mole of ethanol when the value of x in (R.1) equals 2. High theoretical H2 yield makes ethanol steam reforming a very attractive route for H2 production. Thermodynamic equilibrium studies have shown that ethanol steam reforming produces mixtures of H2, CO, CO2, and CH4 below 950 K, while above 950 K the ethanol steam reforming reaction (R.1) adequately describes the product composition In this study a series of 10wt% Ni loaded Mg-Al mixed oxide supported catalysts were evaluated for the production of hydrogen via the steam reforming of ethanol. Mg-Al mixed oxide supported nickel catalysts were found to give superior activity, steam reforming product selectivity (H2 and COx), and improved catalyst stability than the pure oxide supported nickel catalyst at both temperatures investigated. Activity, product selectivity, and catalyst stability were dependent upon the Al and Mg content of the support. At 923 K, the Mg-Al mixed oxide supported nickel catalysts were the best performing catalysts exhibiting the highest steam reforming product yield and were highly stable, showing no signs of deactivation after 20 h of operation. The improved performance of the Mg-Al mixed oxide supported catalysts was related to the incorporation of the pure oxides, MgO and Al2O3, into MgAl2O4. The formation of MgAl2O4 reduced nickel incorporation with the support material since MgAl2O4 does not react with Ni; therefore, nickel was retained in its active form. In addition, incorporation of Mg and Al in to MgAl2O4, a slight basic material, modified the acid-base properties resulting in a catalyst that exhibited moderate acidic and basic site strength and density compared to the pure oxide supported catalysts. Moderation of the acid-base properties improved the activity, selectivity, and stability of the catalysts by reducing activity for by-product reactions producing ethylene and acetaldehyde. At lower reaction temperatures, below 823 K, Mg-Al mixed oxide supported nickel catalysts experienced substantial deactivation resulting in reduced ethanol conversion but interestingly, the H2 and CO2 yields increased, exceeding equilibrium expectations with time on stream while CH4 yield decreased far below equilibrium expectations, suggesting a direct ethanol steam reforming reaction pathway. Over stabilized Mg-Al mixed oxide supported nickel catalysts, direct ethanol steam reforming was activated by a reduction in the catalyst’s activity for the production and desorption of CH4 from the surface. The effect of pressure on the direct ethanol steam reforming reaction pathway over stabilized Mg-Al mixed oxide supported nickel catalysts was investigated at 673 and 823 K. At 823 K, increasing the total pressure resulted in a product distribution that closely matched the thermodynamic expectations. However, at 673 K, the product distribution deviated from thermodynamic expectations, giving substantially greater yields for the steam reforming products, H2, CO, and CO2, while CH4 yield was consistently less than equilibrium expectations. The identification of an alternative direct ethanol steam reforming reaction pathway at relatively low temperatures (below 823 K) that could be operated at elevated pressures will result in an energy efficient process for the production of hydrogen from bio-ethanol.
2

Preparation, characterization, and evaluation of Mg-Al mixed oxide supported nickel catalysts for the steam reforming of ethanol

Coleman, Luke James Ivor 18 January 2008 (has links)
The conversion of ethanol to hydrogen or syngas can be achieved by reacting ethanol with water via steam reforming, CH3CH2OH + (1-x)H2O = (4-x)H2 + (2-x)CO + xCO2 (R.1) CH3CH2OH + H2O = 4H2 + 2CO (R.2) CO + H2O = H2 + CO2 (R.3) Ideally, the ethanol steam reforming reaction can achieve a hydrogen yield of 6 moles of hydrogen per mole of ethanol when the value of x in (R.1) equals 2. High theoretical H2 yield makes ethanol steam reforming a very attractive route for H2 production. Thermodynamic equilibrium studies have shown that ethanol steam reforming produces mixtures of H2, CO, CO2, and CH4 below 950 K, while above 950 K the ethanol steam reforming reaction (R.1) adequately describes the product composition In this study a series of 10wt% Ni loaded Mg-Al mixed oxide supported catalysts were evaluated for the production of hydrogen via the steam reforming of ethanol. Mg-Al mixed oxide supported nickel catalysts were found to give superior activity, steam reforming product selectivity (H2 and COx), and improved catalyst stability than the pure oxide supported nickel catalyst at both temperatures investigated. Activity, product selectivity, and catalyst stability were dependent upon the Al and Mg content of the support. At 923 K, the Mg-Al mixed oxide supported nickel catalysts were the best performing catalysts exhibiting the highest steam reforming product yield and were highly stable, showing no signs of deactivation after 20 h of operation. The improved performance of the Mg-Al mixed oxide supported catalysts was related to the incorporation of the pure oxides, MgO and Al2O3, into MgAl2O4. The formation of MgAl2O4 reduced nickel incorporation with the support material since MgAl2O4 does not react with Ni; therefore, nickel was retained in its active form. In addition, incorporation of Mg and Al in to MgAl2O4, a slight basic material, modified the acid-base properties resulting in a catalyst that exhibited moderate acidic and basic site strength and density compared to the pure oxide supported catalysts. Moderation of the acid-base properties improved the activity, selectivity, and stability of the catalysts by reducing activity for by-product reactions producing ethylene and acetaldehyde. At lower reaction temperatures, below 823 K, Mg-Al mixed oxide supported nickel catalysts experienced substantial deactivation resulting in reduced ethanol conversion but interestingly, the H2 and CO2 yields increased, exceeding equilibrium expectations with time on stream while CH4 yield decreased far below equilibrium expectations, suggesting a direct ethanol steam reforming reaction pathway. Over stabilized Mg-Al mixed oxide supported nickel catalysts, direct ethanol steam reforming was activated by a reduction in the catalyst’s activity for the production and desorption of CH4 from the surface. The effect of pressure on the direct ethanol steam reforming reaction pathway over stabilized Mg-Al mixed oxide supported nickel catalysts was investigated at 673 and 823 K. At 823 K, increasing the total pressure resulted in a product distribution that closely matched the thermodynamic expectations. However, at 673 K, the product distribution deviated from thermodynamic expectations, giving substantially greater yields for the steam reforming products, H2, CO, and CO2, while CH4 yield was consistently less than equilibrium expectations. The identification of an alternative direct ethanol steam reforming reaction pathway at relatively low temperatures (below 823 K) that could be operated at elevated pressures will result in an energy efficient process for the production of hydrogen from bio-ethanol.
3

Avaliação da formação de eteno em catalisadores de Ni suportados em matrizes de Al2O3-aditivo(Ca, Ba, Sr) na reação de reforma a vapor do etanol / Evaluation of the ethene formation over Ni catalysts supported on Al2O3 modified (Ca, Ba, Sr) for ethanol steam reforming

Elias, Kariny Ferreira Monteiro 12 September 2011 (has links)
No presente trabalho foi estudado o efeito da adição de cálcio, bário e estrôncio (0%-5% em massa) em catalisadores Ni/Al2O3, contendo 5% de níquel em massa, frente à reação de reforma a vapor do etanol com o objetivo de inibir a reação de desidratação do etanol, precursor do carbono. Os catalisadores foram preparados por dois métodos: impregnação (I) e co-precipitação (C). Inicialmente todos os catalisadores obtidos foram submetidos a analise de espectroscopia dispersiva em emissão de raios X (EDX), para confirmação de suas composições químicas, em seguida foram aplicados na reação de reforma a vapor do etanol, dentre os catalisadores estudados os que apresentaram a menor formação de eteno foram, 5%Ca-5%Ni/Al (I) e 5%Ca-5%Ni/Al (C) dentre os que continham cálcio; 0,5%Ba-5%Ni/Al (I) e 5%Ba-5%Ni/Al (C) dentre os que continham bário e 5%Sr-5%Ni/Al (I) e 5%Sr-5%Ni/Al (C) dentre os que continham estrôncio, sendo então submetidos as etapas de caracterização, difração de raios X (DRX), redução a temperatura programada (RTP), área superficial específica pelo método BET e reação de decomposição do isopropanol. O desempenho destes catalisadores foi comparado com o obtido para os catalisadores sem aditivos 5Ni/Al(I) e 5Ni/Al(C). O método da impregnação demonstrou ser mais eficiente do que o método da co-precipitação para o alcance dos objetivos do trabalho e o catalisador 5Ca-5Ni/Al (I) foi o mais efetivo na redução da acidez da alumina e consequentemente mostrou menor deposição de carbono. / Catalysts of Ni/Al2O3 containing 5wt% of nickel and modified by calcium, barium and strontium addition (0wt% - 5wt%) were tested in the ethanol steam reforming with the goal of reduce the reaction of dehydratation of ethanol, a carbon precursor. The catalysts were prepared by two methods: impregnation (I) and co-precipitation (C). Initially, all catalysts were subjected to analysis by Energy-dispersive X-ray spectroscopy (EDX), to confirm their chemical compositions, then they were applied in the steam reforming of ethanol, Among the catalysts studied those with lower ethene production were: 5%Ca-5%Ni/Al (I), 5%Ca-5%Ni/Al (C) among those containing calcium; 0,5%Ba-5%Ni/Al (I), 5%Ba-5%Ni/Al (C) among those containing barium and 5%Sr-5%Ni/Al (I), 5%Sr-5%Ni/Al (C) among those containing strontium, being submitted to the characterization by X-ray diffraction (XRD), temperature programmed reduction (TPR), specific surface area by BET method and reaction of isopropanol decomposition. The performance of these catalysts was compared to with the catalysts without additives 5(wt%)Ni/Al(I) and 5(wt%)Ni/Al(C). The impregnation method was more effective than the method co-precipitation for achieving the objectives of this work and the catalyst 5Ni-5Ca/Al (I) was the more effective in the reduction of alumina acidity and also showed the lower carbon deposition.
4

Avaliação da formação de eteno em catalisadores de Ni suportados em matrizes de Al2O3-aditivo(Ca, Ba, Sr) na reação de reforma a vapor do etanol / Evaluation of the ethene formation over Ni catalysts supported on Al2O3 modified (Ca, Ba, Sr) for ethanol steam reforming

Kariny Ferreira Monteiro Elias 12 September 2011 (has links)
No presente trabalho foi estudado o efeito da adição de cálcio, bário e estrôncio (0%-5% em massa) em catalisadores Ni/Al2O3, contendo 5% de níquel em massa, frente à reação de reforma a vapor do etanol com o objetivo de inibir a reação de desidratação do etanol, precursor do carbono. Os catalisadores foram preparados por dois métodos: impregnação (I) e co-precipitação (C). Inicialmente todos os catalisadores obtidos foram submetidos a analise de espectroscopia dispersiva em emissão de raios X (EDX), para confirmação de suas composições químicas, em seguida foram aplicados na reação de reforma a vapor do etanol, dentre os catalisadores estudados os que apresentaram a menor formação de eteno foram, 5%Ca-5%Ni/Al (I) e 5%Ca-5%Ni/Al (C) dentre os que continham cálcio; 0,5%Ba-5%Ni/Al (I) e 5%Ba-5%Ni/Al (C) dentre os que continham bário e 5%Sr-5%Ni/Al (I) e 5%Sr-5%Ni/Al (C) dentre os que continham estrôncio, sendo então submetidos as etapas de caracterização, difração de raios X (DRX), redução a temperatura programada (RTP), área superficial específica pelo método BET e reação de decomposição do isopropanol. O desempenho destes catalisadores foi comparado com o obtido para os catalisadores sem aditivos 5Ni/Al(I) e 5Ni/Al(C). O método da impregnação demonstrou ser mais eficiente do que o método da co-precipitação para o alcance dos objetivos do trabalho e o catalisador 5Ca-5Ni/Al (I) foi o mais efetivo na redução da acidez da alumina e consequentemente mostrou menor deposição de carbono. / Catalysts of Ni/Al2O3 containing 5wt% of nickel and modified by calcium, barium and strontium addition (0wt% - 5wt%) were tested in the ethanol steam reforming with the goal of reduce the reaction of dehydratation of ethanol, a carbon precursor. The catalysts were prepared by two methods: impregnation (I) and co-precipitation (C). Initially, all catalysts were subjected to analysis by Energy-dispersive X-ray spectroscopy (EDX), to confirm their chemical compositions, then they were applied in the steam reforming of ethanol, Among the catalysts studied those with lower ethene production were: 5%Ca-5%Ni/Al (I), 5%Ca-5%Ni/Al (C) among those containing calcium; 0,5%Ba-5%Ni/Al (I), 5%Ba-5%Ni/Al (C) among those containing barium and 5%Sr-5%Ni/Al (I), 5%Sr-5%Ni/Al (C) among those containing strontium, being submitted to the characterization by X-ray diffraction (XRD), temperature programmed reduction (TPR), specific surface area by BET method and reaction of isopropanol decomposition. The performance of these catalysts was compared to with the catalysts without additives 5(wt%)Ni/Al(I) and 5(wt%)Ni/Al(C). The impregnation method was more effective than the method co-precipitation for achieving the objectives of this work and the catalyst 5Ni-5Ca/Al (I) was the more effective in the reduction of alumina acidity and also showed the lower carbon deposition.
5

\"Catalisadores de platina suportados em ZrO2/g-Al2O3 para a reação de reforma a vapor de etanol\" / \"ZrO2/g-Al2O3-supported platinum catalysts for the steam reforming of ethanol\"

Lima, Fábio Wéliton Jorge 31 May 2006 (has links)
Neste trabalho foram preparados e caracterizados catalisadores de platina suportados em g-alumina (g-Al2O3), óxido de zircônio (ZrO2) e em suportes mistos de óxido de zircônio e g-alumina. Os suportes bi-componente contendo (15%) ZrO2/g-Al2O3 foram preparados por dois métodos distintos: no primeiro, utilizou-se uma suspensão ácida de óxido de zircônio comercial e no segundo, óxido de zircônio precipitado a partir do acetato. Os catalisadores foram submetidos a ensaios catalíticos de reforma a vapor de etanol a fim de verificar o efeito do suporte sobre a distribuição dos produtos. As técnicas de caracterização utilizadas foram área superficial específica (B.E.T), redução a temperatura programada (RTP), difração de raios-X (DRX) e espectroscopia de absorção molecular na região UV-VI, que identificou a espécie [PtOxCly]s2-. A conversão do etanol e a distribuição dos produtos variaram para cada suporte testado e para os diferentes tempos de contatos (W/F) utilizados. O catalisador (1%) Pt/g-Al2O3 apresentou a melhor seletividade para a produção de hidrogênio e a menor conversão para o etanol. Os catalisadores que utilizaram o suporte bi-componente (15%) ZrO2/g-Al2O3 e ZrO2 pura apresentaram alta conversão de etanol e baixa seletividade para hidrogênio, além de alta tendência à formação de bio-produtos. / In this work catalysts of platinum supported on g-alumina (g-Al2O3), oxide of zirconium (ZrO2) and mixed oxide of zirconium and g-alumina had been prepared and characterized. The bi-component supports containing ( 15%) ZrO2/g-Al2O3 had been prepared by two different methods : in the first, an acid suspension of comercial oxide of zirconium was used and in the second, oxide of zirconium was precipitated from acetate. The catalysts were tested in ethanol steam reforming reaction to verify the effect of the support on the distribution of the products. For the characterization, the following techniques were used. Superficial specific area (B.E.T,), temperature programmed reduction (TPR.), X-ray powder diffraction (XRD) and spectroscopy of molecular absorption in the UV-vis, for identification of [PtOxCly]s 2- species. The ethanol conversion and product distribution were different for each support tested and for different time of contact (W/F) used. The catalyst (1%) Pt/g-Al2O3 presented the best selectivity for the hydrogen production and the lower conversion for ethanol. The catalysts with bi-component support (15%) ZrO2/ g-Al2O3 and pure ZrO2 presented high ethanol conversion and lower selectivity for hydrogen production with high selectivity and formation of bio-products.
6

Desenvolvimento de catalisadores de Rh/Ni/YSZ e Ru/Ni/YSZ para a reforma interna de etanol em ânodos de células a combustível de óxido sólido / Development of Rh/Ni/YSZ and Ru/Ni/YSZ for the ethanol steam reforming in anode of solid fuel cells

Oliveira, Drielly Cristina de 18 September 2012 (has links)
Neste trabalho, investigou-se a atividade catalítica de materiais a base de Ni/YSZ modificados com Rh ou Ru a 0,5%, 1% e 3%, para a reforma a vapor de etanol (RVE) e seus desempenhos como eletrocatalisadores em células a combustível de óxido sólido (SOFCs - Solid Oxide Fuel Cell). Os catalisadores foram preparados pelo método Pechini e de impregnação. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução à Temperatura Programada, Fisissorção de Nitrogênio, Microscopia Eletrônica de Varredura e Análise Elementar. Os testes catalíticos foram realizados a 700 e 900 °C, em uma linha de reação acoplada a um cromatógrafo a gás para o monitoramento dos produtos reacionais gasosos. Os produtos líquidos resultantes da RVE foram analisados por Cromatografia Líquida de Alta Eficiência (CLAE). O objetivo principal foi correlacionar a estrutura e a composição destes materiais com a produção de H2, distribuição de outros produtos reacionais e formação de depósitos de carbono. Os resultados obtidos mostraram que a incorporação de Rh ou Ru no catalisador de Ni/YSZ não resultou em mudanças significativas na estrutura e atividade catalítica, porém promoveu uma diminuição na quantidade de carbono formado, sendo mais expressiva para o caso da adição de Rh. O aumento da temperatura de reação de 700 °C para 900 °C resultou em um aumento da seletividade dos catalisadores para os produtos gasosos e diminuição da formação de coque. O estudo em uma célula unitária de SOFC foi conduzido utilizando-se platina no cátodo e 3%Rh/40%Ni/YSZ(P) no ânodo, em uma célula operando com H2 e ar a 900 °C. Embora as curvas de polarização tenham apresentado baixas densidades de potência, os resultados mostraram que o material de 3%Rh/40%Ni/YSZ(P) foi ativo para a produção e eletro-oxidação de H2 em condições reais de operação das SOFCs. Além disso, mostrou-se que é possível investigar a atividade de eletrocatalisadores de ânodos de SOFC para a reforma de etanol em linhas de reação comumente utilizadas em estudos de catálise heterogênea. / In this work, it was investigated the electrocatalytic activity of Ni/YSZ promoted with Rh or Ru (0.5 wt%, 1.0 wt% and 3.0 wt% content) for the Ethanol Steam Reforming (ESR) reaction, and their performance as electrocatalysts in Solid Oxide Fuel Cells (SOFCs). The catalysts were prepared by the Pechini and Impregnation methods. The material characterization was carried out by Energy Dispersive X-ray (EDX), X-ray Diffraction (DRX), Temperature Programmed Reduction (TPR-H2), N2 physisorption, Scanning Electron Microscopy (SEM), and Elemental Analysis. The catalytic tests were performed at 700 and 900 °C in a reaction system coupled to a gas chromatograph in order to monitor the gaseous products. The liquid products were analyzed by High Performance Liquid Chromatography (HPLC). The structure and composition of these catalysts were correlated to the H2 formation, with the distribution of other parallel reaction products, including the carbon deposition. The obtained results showed that the incorporation of Rh or Ru does not change significantly the structure and catalytic activity, but it decreases the carbon deposits, being more significant for the addition of Rh. The increase of the reaction temperature from 700 °C to 900 °C increased the gaseous products selectivities and decreased the carbon deposition. The study in SOFC unit cells were conducted using platinum and 3%Rh/40%Ni/YSZ(P) in the cathode and anode, respectively. The SOFC operated with H2 and air, and 900 °C. Although the polarization curves have presented low power densities, the obtained results showed that the 3%Rh/40%Ni/YSZ(P) electrocatalyst was active for the H2 production and eletro-oxidation in the SOFC real operation conditions. Furthermore, the results have demonstrated that it is possible to investigate SOFC electrocatalysts activity for the ethanol steam reforming in reaction lines commonly utilized in heterogeneous catalysis studies.
7

Steam Reforming Of Ethanol Over Sol-gel-synthesized Mixed Oxide Catalysts

Olcay, Hakan Onder 01 August 2005 (has links) (PDF)
Depletion in the reserves of fossil fuels, inefficient energy production from these fuels and the negative effect of their usage on atmosphere, and thereby, on human health have accelerated researches on clean energy. Hydrogen produced from ethanol when used in fuel cells not only generates efficient energy but also creates a closed carbon cycle in nature. ZnO and Cu/ZnO catalysts are known with their superior performance in alcohol synthesis. From the principle of microkinetic reversibility they are expected to be superior catalysts for the steam reforming reaction of ethanol as well. ZnO catalysts can be modified by precious, Pd, or non-precious, Cu, metals to enhance hydrogen desorption capability, and dispersed on SiO2 for high surface areas via sol-gel technique. Steam reforming tests over ZnO catalysts revealed that they act only as ethanol dehydrogenation catalysts in the temperature range of 300-500C. Promotion with Pd or Cu decreased hydrogen selectivity due most probably to unreachable closed pores of the catalysts. Autothermal reforming tests over both ZnO/SiO2 and Co/SBA-15 catalysts, on the other hand, gave rise to the formation of several side products.
8

Desenvolvimento de catalisadores de Rh/Ni/YSZ e Ru/Ni/YSZ para a reforma interna de etanol em ânodos de células a combustível de óxido sólido / Development of Rh/Ni/YSZ and Ru/Ni/YSZ for the ethanol steam reforming in anode of solid fuel cells

Drielly Cristina de Oliveira 18 September 2012 (has links)
Neste trabalho, investigou-se a atividade catalítica de materiais a base de Ni/YSZ modificados com Rh ou Ru a 0,5%, 1% e 3%, para a reforma a vapor de etanol (RVE) e seus desempenhos como eletrocatalisadores em células a combustível de óxido sólido (SOFCs - Solid Oxide Fuel Cell). Os catalisadores foram preparados pelo método Pechini e de impregnação. A caracterização estrutural foi realizada utilizando-se as técnicas de Energia Dispersiva de Raios X, Difratometria de Raios X, Redução à Temperatura Programada, Fisissorção de Nitrogênio, Microscopia Eletrônica de Varredura e Análise Elementar. Os testes catalíticos foram realizados a 700 e 900 °C, em uma linha de reação acoplada a um cromatógrafo a gás para o monitoramento dos produtos reacionais gasosos. Os produtos líquidos resultantes da RVE foram analisados por Cromatografia Líquida de Alta Eficiência (CLAE). O objetivo principal foi correlacionar a estrutura e a composição destes materiais com a produção de H2, distribuição de outros produtos reacionais e formação de depósitos de carbono. Os resultados obtidos mostraram que a incorporação de Rh ou Ru no catalisador de Ni/YSZ não resultou em mudanças significativas na estrutura e atividade catalítica, porém promoveu uma diminuição na quantidade de carbono formado, sendo mais expressiva para o caso da adição de Rh. O aumento da temperatura de reação de 700 °C para 900 °C resultou em um aumento da seletividade dos catalisadores para os produtos gasosos e diminuição da formação de coque. O estudo em uma célula unitária de SOFC foi conduzido utilizando-se platina no cátodo e 3%Rh/40%Ni/YSZ(P) no ânodo, em uma célula operando com H2 e ar a 900 °C. Embora as curvas de polarização tenham apresentado baixas densidades de potência, os resultados mostraram que o material de 3%Rh/40%Ni/YSZ(P) foi ativo para a produção e eletro-oxidação de H2 em condições reais de operação das SOFCs. Além disso, mostrou-se que é possível investigar a atividade de eletrocatalisadores de ânodos de SOFC para a reforma de etanol em linhas de reação comumente utilizadas em estudos de catálise heterogênea. / In this work, it was investigated the electrocatalytic activity of Ni/YSZ promoted with Rh or Ru (0.5 wt%, 1.0 wt% and 3.0 wt% content) for the Ethanol Steam Reforming (ESR) reaction, and their performance as electrocatalysts in Solid Oxide Fuel Cells (SOFCs). The catalysts were prepared by the Pechini and Impregnation methods. The material characterization was carried out by Energy Dispersive X-ray (EDX), X-ray Diffraction (DRX), Temperature Programmed Reduction (TPR-H2), N2 physisorption, Scanning Electron Microscopy (SEM), and Elemental Analysis. The catalytic tests were performed at 700 and 900 °C in a reaction system coupled to a gas chromatograph in order to monitor the gaseous products. The liquid products were analyzed by High Performance Liquid Chromatography (HPLC). The structure and composition of these catalysts were correlated to the H2 formation, with the distribution of other parallel reaction products, including the carbon deposition. The obtained results showed that the incorporation of Rh or Ru does not change significantly the structure and catalytic activity, but it decreases the carbon deposits, being more significant for the addition of Rh. The increase of the reaction temperature from 700 °C to 900 °C increased the gaseous products selectivities and decreased the carbon deposition. The study in SOFC unit cells were conducted using platinum and 3%Rh/40%Ni/YSZ(P) in the cathode and anode, respectively. The SOFC operated with H2 and air, and 900 °C. Although the polarization curves have presented low power densities, the obtained results showed that the 3%Rh/40%Ni/YSZ(P) electrocatalyst was active for the H2 production and eletro-oxidation in the SOFC real operation conditions. Furthermore, the results have demonstrated that it is possible to investigate SOFC electrocatalysts activity for the ethanol steam reforming in reaction lines commonly utilized in heterogeneous catalysis studies.
9

\"Catalisadores de platina suportados em ZrO2/g-Al2O3 para a reação de reforma a vapor de etanol\" / \"ZrO2/g-Al2O3-supported platinum catalysts for the steam reforming of ethanol\"

Fábio Wéliton Jorge Lima 31 May 2006 (has links)
Neste trabalho foram preparados e caracterizados catalisadores de platina suportados em g-alumina (g-Al2O3), óxido de zircônio (ZrO2) e em suportes mistos de óxido de zircônio e g-alumina. Os suportes bi-componente contendo (15%) ZrO2/g-Al2O3 foram preparados por dois métodos distintos: no primeiro, utilizou-se uma suspensão ácida de óxido de zircônio comercial e no segundo, óxido de zircônio precipitado a partir do acetato. Os catalisadores foram submetidos a ensaios catalíticos de reforma a vapor de etanol a fim de verificar o efeito do suporte sobre a distribuição dos produtos. As técnicas de caracterização utilizadas foram área superficial específica (B.E.T), redução a temperatura programada (RTP), difração de raios-X (DRX) e espectroscopia de absorção molecular na região UV-VI, que identificou a espécie [PtOxCly]s2-. A conversão do etanol e a distribuição dos produtos variaram para cada suporte testado e para os diferentes tempos de contatos (W/F) utilizados. O catalisador (1%) Pt/g-Al2O3 apresentou a melhor seletividade para a produção de hidrogênio e a menor conversão para o etanol. Os catalisadores que utilizaram o suporte bi-componente (15%) ZrO2/g-Al2O3 e ZrO2 pura apresentaram alta conversão de etanol e baixa seletividade para hidrogênio, além de alta tendência à formação de bio-produtos. / In this work catalysts of platinum supported on g-alumina (g-Al2O3), oxide of zirconium (ZrO2) and mixed oxide of zirconium and g-alumina had been prepared and characterized. The bi-component supports containing ( 15%) ZrO2/g-Al2O3 had been prepared by two different methods : in the first, an acid suspension of comercial oxide of zirconium was used and in the second, oxide of zirconium was precipitated from acetate. The catalysts were tested in ethanol steam reforming reaction to verify the effect of the support on the distribution of the products. For the characterization, the following techniques were used. Superficial specific area (B.E.T,), temperature programmed reduction (TPR.), X-ray powder diffraction (XRD) and spectroscopy of molecular absorption in the UV-vis, for identification of [PtOxCly]s 2- species. The ethanol conversion and product distribution were different for each support tested and for different time of contact (W/F) used. The catalyst (1%) Pt/g-Al2O3 presented the best selectivity for the hydrogen production and the lower conversion for ethanol. The catalysts with bi-component support (15%) ZrO2/ g-Al2O3 and pure ZrO2 presented high ethanol conversion and lower selectivity for hydrogen production with high selectivity and formation of bio-products.
10

Energetic Analysis of Hydrogen Production in a Sugar-Ethanol Plant / Energetisk analys av vätgas produktion i en socker-etanol anläggning

Roberts, Justo January 2011 (has links)
In the present work it is evaluated the possibility of incorporating the production of hydrogen through the steam reforming of ethanol in a sugar-alcohol plant. The analysis is made using as a model an existing plant located in São Paulo, the Pioneros Distillery. An energetic and exergetic analysis is performed. Three operating scenarios were analyzed. In the first configuration the plant only generates electricity to supply its internal needs. In a second scenario the plant uses all the bagasse to generate electricity, targeting to sell electric power. Finally it was considered the possibility to incorporate the hydrogen production by ethanol steam reforming. The capacity of the plant to produce hydrogen is evaluated. The surplus bagasse is used to generate the electricity and thermal energy required for hydrogen production. A part of the anhydrous alcohol is used in the reformer for hydrogen production. An energetic study of the plant is developed based on the first law of thermodynamics. Some important parameters related to the thermal system performance are evaluated like: steam consumption in the process, specific consumption of steam turbines; and those properly related to plants of sugar-ethanol sector as: electrical or mechanical power generated from one ton of sugarcane and power generated from a given amount of bagasse burned in the boiler. It is considered the possibility of generating electricity using bagasse, which could be sold to the local energy concessionaire. Characteristic parameters of a cogeneration system (α and β) are also evaluated, these parameters depend on the characteristics of the thermodynamic system and the operating strategy. The system energy losses, excluding those located in the boiler and the electric generator, are higher in scenario 2 than in scenario 1. The efficiency is 70% in Scenario 1 and 57% in scenario 2. In scenario 3, the plant's potential for hydrogen generation is 4,467,000Nm3/year (951Nm3/h). To achieve this, the new process uses 7 % of the anhydrous ethanol produced in the plant, which implies a surplus of 37 lethanolanhydro/tcane available for sale. In this configuration all the bagasse is used for electricity and heat generation required for the hydrogen production. The hydrogen could be used for fuel cell vehicles. The plant is able to supply 68 buses with autonomy of 200 to 300 km per day. The incorporation of the hydrogen production process by steam reforming represents an attractive alternative to the sugar-alcohol sector.

Page generated in 0.0589 seconds