• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • Tagged with
  • 19
  • 19
  • 12
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparing detection methods of aflatoxin and exploring aflatoxin decontamination methods

Singleterry, Rebecca Burgett 10 December 2010 (has links)
Ethanol fermentation of highly concentrated aflatoxin-contaminated corn (Zea mays) was conducted on a lab scale to determine if aflatoxin concentrated in the distilled ethanol and/or dry distillers grain end-products. Alliquots of fermented mash, distilled ethanol, stillage, and dry distillers grain (DDG) were analyzed via LC-MS/MS and immunoassay detection methods for aflatoxin. Results indicate that aflatoxin does not greatly concentrate during fermentation in the DDGs and is undetectable in distilled ethanol. Addition of binders, MTB-100®, to aflatoxin-contaminated DDGs showed great reduction in aflatoxin concentrations when analyzed via LC-MS/MS. Also, an experiment investigating detoxification of aflatoxin using Clorox® was conducted. Results obtained from LC-MS/MS showed a positive correlation of decreased aflatoxin levels with increasing Clorox® levels following a logarithmic trend.
2

Efficient extraction method to collect sugar from sweet sorghum

Jia, Fei, Chawhuaymak, Jeerwan, Riley, Mark, Zimmt, Werner, Ogden, Kimberly January 2013 (has links)
BACKGROUND:Sweet sorghum is a domesticated grass containing a sugar-rich juice that can be readily utilized for ethanol production. Most of the sugar is stored inside the cells of the stalk tissue and can be difficult to release, a necessary step before conventional fermentation. While this crop holds much promise as an arid land sugar source for biofuel production, a number of challenges must be overcome. One lies in the inherent labile nature of the sugars in the stalks leading to a short usable storage time. Also, collection of sugars from the sweet sorghum stalks is usually accomplished by mechanical squeezing, but generally does not collect all of the available sugars.RESULTS:In this paper, we present two methods that address these challenges for utilization of sweet sorghum for biofuel production. The first method demonstrates a means to store sweet sorghum stalks in the field under semi-arid conditions. The second provides an efficient water extraction method that can collect as much of the available sugar as feasible. Operating parameters investigated include temperature, stalk size, and solid-liquid ratio that impact both the rate of sugar release and the maximal amount recovered with a goal of low water use. The most desirable conditions include 30degreesC, 0.6 ratio of solid to liquid (w/w), which collects 90 % of the available sugar. Variations in extraction methods did not alter the efficiency of the eventual ethanol fermentation.CONCLUSIONS:The water extraction method has the potential to be used for sugar extraction from both fresh sweet sorghum stalks and dried ones. When combined with current sugar extraction methods, the overall ethanol production efficiency would increase compared to current field practices.
3

Process Oscillations in Continuous Ethanol Fermentation with Saccharomyces cerevisiae

Bai, Fengwu January 2007 (has links)
Based on ethanol fermentation kinetics and bioreactor engineering theory, a system composed of a continuously stirred tank reactor (CSTR) and three tubular bioreactors in series was established for continuous very high gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae. Sustainable oscillations of residual glucose, ethanol, and biomass characterized by long oscillation periods and large oscillation amplitudes were observed when a VHG medium containing 280 g/L glucose was fed into the CSTR at a dilution rate of 0.027 h???1. Mechanistic analysis indicated that the oscillations are due to ethanol inhibition and the lag response of yeast cells to ethanol inhibition. A high gravity (HG) medium containing 200 g/L glucose and a low gravity (LG) medium containing 120 g/L glucose were fed into the CSTR at the same dilution rate as that for the VHG medium, so that the impact of residual glucose and ethanol concentrations on the oscillations could be studied. The oscillations were not significantly affected when the HG medium was used, and residual glucose decreased significantly, but ethanol maintained at the same level, indicating that residual glucose was not the main factor triggering the oscillations. However, the oscillations disappeared after the LG medium was fed and ethanol concentration decreased to 58.2 g/L. Furthermore, when the LG medium was supplemented with 30 g/L ethanol to achieve the same level of ethanol in the fermentation system as that achieved under the HG condition, the steady state observed for the original LG medium was interrupted, and the oscillations observed under the HG condition occurred. The steady state was gradually restored after the original LG medium replaced the modified one. These experimental results confirmed that ethanol, whether produced by yeast cells during fermentation or externally added into a fermentation system, can trigger oscillations once its concentration approaches to a criterion. The impact of dilution rate on oscillations was also studied. It was found that oscillations occurred at certain dilution rate ranges for the two yeast strains. Since ethanol production is tightly coupled with yeast cell growth, it was speculated that the impact of the dilution rate on the oscillations is due to the synchronization of the mother and daughter cell growth rhythms. The difference in the oscillation profiles exhibited by the two yeast strains is due to their difference in ethanol tolerance. For more practical conditions, the behavior of continuous ethanol fermentation was studied using a self-flocculating industrial yeast strain and corn flour hydrolysate medium in a simulated tanks-in-series fermentation system. Amplified oscillations observed at the dilution rate of 0.12 h???1 were postulated to be due to the synchronization of the two yeast cell populations generated by the continuous inoculation from the seed tank upstream of the fermentation system, which was partly validated by oscillation attenuation after the seed tank was removed from the fermentation system. The two populations consisted of the newly inoculated yeast cells and the yeast cells already adapted to the fermentation environment. Oscillations increased residual sugar at the end of the fermentation, and correspondingly, decreased the ethanol yield, indicating the need for attenuation strategies. When the tubular bioreactors were packed with ????? Intalox ceramic saddles, not only was their ethanol fermentation performance improved, but effective oscillation attenuation was also achieved. The oscillation attenuation was postulated to be due to the alleviation of backmixing in the packed tubular bioreactors as well as the yeast cell immobilization role of the packing. The residence time distribution analysis indicated that the mixing performance of the packed tubular bioreactors was close to a CSTR model for both residual glucose and ethanol, and the assumed backmixing alleviation could not be achieved. The impact of yeast cell immobilization was further studied using several different packing materials. Improvement in ethanol fermentation performance as well as oscillation attenuation was achieved for the wood chips, as well as the Intalox ceramic saddles, but not for the porous polyurethane particles, nor the steel Raschig rings. Analysis for the immobilized yeast cells indicated that high viability was the mechanistic reason for the improvement of the ethanol fermentation performance as well as the attenuation of the oscillations. A dynamic model was developed by incorporating the lag response of yeast cells to ethanol inhibition into the pseudo-steady state kinetic model, and dynamic simulation was performed, with good results. This not only provides a basis for developing process intervention strategies to minimize oscillations, but also theoretically support the mechanistic hypothesis for the oscillations.
4

Optimization of Wastewater Microalgae Pretreatment for Acetone, Butanol, and Ethanol Fermentation

Castro, Yessica A. 01 May 2014 (has links)
Acetone-butanol-ethanol (ABE) fermentation from wastewater microalgae by Clostridium saccharoperbutylacetonicum N1-4 is a novel bioprocess that utilizes waste substrate to generate valuable solvents. Butanol, the most abundant product resulting from ABE fermentation, is an environmentally safe and high performing fuel that can be utilized as a drop-in-fuel; however, high operational costs and low ABE yield present challenge in scale-up of the process. The utilization of algae as a substrate requires pretreatment prior to fermentation to increase the bioavailability of the algal fermentable sugars and to improve the conditions of the pre-fermentation medium. The purpose of this thesis was to optimize wastewater microalgae pretreatment through (1) the optimization of microalgae saccharification, and (2) the use of cheese whey as co-substrate and supplement. Optimal conditions for sugar liberation from wastewater algae through acid hydrolysis were determined for subsequent fermentation to acetone, butanol, and ethanol (ABE). Acid concentration, retention time, and temperature were evaluated to define optimal hydrolysis conditions by assessing sugar and ABE concentrations, and the associated costs. Additionally, the effect of cheese whey as a supplement and substrate was determined for acetone, butanol, and ethanol (ABE) fermentation from wastewater microalgae. Three media constituents, potassium phosphate, magnesium sulfate, and ferrous sulfate, were evaluated to assess their need as supplements in the medium to be inoculated, when 50 g/L of cheese whey was present. The optimization of wastewater microalgae pretreatment results in increasing ABE production and decreasing process costs.
5

TECHNO-ECONOMIC COMPARISON OF ACETONE-BUTANOL-ETHANOL FERMENTATION USING VARIOUS EXTRACTANTS

Dalle Ave, Giancarlo January 2016 (has links)
This work seeks to compare various Acetone-Butanol-Ethanol (ABE) fermentation extraction chemicals on an economic and environmental basis. The chemicals considered are: decane, a decane/oleyl alcohol blend, decanol, a decanol/oleyl alcohol blend, 2-ethyl-hexanol, hexanol, mesitylene, and oleyl alcohol. To facilitate comparison a pure-distillation base case was also considered. The aforementioned extractants are a mix of both toxic and non-toxic extractants. Non-toxic extractants can be used directly in fermentation reactors, improving overall fermentation yield by removal of toxic butanol. The extractants were modelled in Aspen Plus V8.8 and separation trains were designed to take advantage of extractant properties. The separation section of the plant was then integrated with upstream and downstream units to determine the Minimum Butanol Selling Prices (MBSP) for second generation extractive ABE fermentation. Upstream processes include biomass (switchgrass) solids processing, biomass pre-treatment/saccharification and fermentation while downstream processes include utility generation and wastewater treatment. The cost of CO2 equivalent emissions avoided (CCA) was used as a metric to compare environmental impact of each process as compared to gasoline. The economic best and environmental best extractant is shown to be 2-ethyl-hexanol with a MBSP of $1.58/L and a CCA of $471.57/tonne CO2 equivalent emissions avoided. Wastewater treatment, which is often ignored in other works, was found to makeup over 30% of total installed capital cost for all extractants. / Thesis / Master of Applied Science (MASc)
6

Efeito do substrato e das condições de tratamento do fermento sobre a fermentação etanólica contaminada com leveduras Saccharomyces cerevisiae selvagens e Lactobacillus fermentum / Effect of the substrate and the cell treatment conditions on the ethanolic fermentation contaminated with Saccharomyces cerevisiae wild yeasts and Lactobacillus fermentum

Reis, Vanda Renata 07 April 2016 (has links)
Pouco se sabe sobre o efeito do substrato e a interação entre as leveduras selvagens e bactérias do gênero Lactobacillus na fermentação alcoólica, pois os estudos tem se concentrado na avaliação dos efeitos da contaminação por um ou outro contaminante separadamente. Diante disso, este trabalho teve como objetivos estudar o efeito do substrato e das condições de tratamento do fermento sobre as fermentações contaminadas com ambos os micro-organismos, leveduras S. cerevisiae selvagens (três linhagens apresentando colônias rugosas e células dispostas em pseudohifas) e Lactobacillus fermentum, tendo a linhagem industrial de S. cerevisiae PE-2 como levedura do processo. Foram realizadas fermentações em batelada em mosto de caldo e de melaço, sem reciclo e com reciclo celular, utilizando tanto a cultura pura da linhagem PE-2 quanto as culturas mistas com as linhagens rugosas e ou L. fermentum. Foram avaliadas modificações no tratamento ácido do fermento, visando o controle do crescimento dos contaminantes sem afetar a levedura do processo. Em seguida, foram conduzidas fermentações contaminadas e não contaminadas submetidas ao tratamento ácido combinado com adição de etanol, tanto em caldo quanto em melaço, utilizando-se PE-2, uma das linhagens rugosas e L. fermentum. A atividade da invertase extracelular foi também avaliada em ambos os substratos para os micro-organismos estudados, em condições de crescimento. Concluiu-se que o tipo de substrato de fermentação, caldo de cana ou melaço, influenciou o desempenho da linhagem industrial PE-2 assim como afetou o desenvolvimento das contaminações com as leveduras rugosas S. cerevisiae na presença ou ausência da bactéria L. fermentum, em fermentações sem reciclo celular. O efeito da contaminação foi mais evidente quando se utilizou caldo de cana do que melaço como substrato, no caso da contaminação com leveduras rugosas, e o inverso no caso da contaminação com L. fermentum. O efeito da contaminação sobre a eficiência fermentativa foi maior na presença da levedura rugosa do que com a bactéria, e a contaminação dupla (tanto com a levedura rugosa quanto com a bactéria) não teve efeito maior sobre a eficiência fermentativa do que a contaminação simples, por um ou por outro micro-organismo isoladamente, especialmente na fermentação em batelada com reciclo celular, independentemente do substrato. Nas fermentações com reciclo de células, o efeito do substrato foi menos evidente. O controle do crescimento das linhagens rugosas pode ser realizado modificando o tratamento ácido normalmente realizado na indústria, seja pela adição de etanol à solução ácida ou pelo abaixamento do pH, dependendo da linhagem rugosa. O tratamento combinado baixo pH (2,0) + 13% etanol afetou a fisiologia da linhagem industrial, trazendo prejuízos à fermentação com reciclo celular, com pequeno controle sobre o crescimento da levedura rugosa e causando morte celular à L. fermentum. A diferença na atividade invertásica entre as linhagens rugosas e industrial de S. cerevisiae pode ser a responsável pela fermentação lenta apresentada pelas linhagens rugosas quando presentes na fermentação, sendo não significativa a influência do substrato sobre a atividade dessa enzima. / A little is known about the effect of the substrate and the interaction among wild yeast strains and bacteria Lactobacillus in the alcoholic fermentation, because the studies have been concentrated in the evaluation of the contamination effects by one or another contaminant, separately. This work aimed to evaluate the effect of the substrate and the cell treatment conditions over the batch fermentations contaminated with both microorganisms, yeast wild strains of S. cerevisiae (three strains displaying rough colonies and pseudohyphal cell growth) and Lactobacillus fermentum, being the S. cerevisiae strain PE-2 as the starter yeast. Fermentations using sugarcane juice and molasses, without and with cell recycle, utilizing both the pure culture of PE-2 as the mixed cultures with rough yeast strains and or L. fermentum were carried out. Modifications in the acid cell treatment by the addition of ethanol to the acid solution and the lowering of pH of the acid solution or a treatment with potassium metabisulphite were evaluated, aiming the growth control of the contaminants without affecting the starter yeast. An acid treatment with the addition of 13% ethanol was applied in fermentation with cell recycle, both in sugarcane juice and molasses, utilizing PE-2, one of the rough yeast strains and L. fermentum. The extracellular invertase activity was also evaluated in both substrates for the microorganisms studied, in growing conditions. The type of substrate, sugarcane juice or molasses, influenced the performance of the PE-2 strain as well as affected the development of the contaminations with rough S. cerevisiae yeast strains with or without L. fermentum, in fermentations without cell recycle. The effect of the contamination was more remarkable when sugarcane juice was utilized, in fermentations contaminated with rough yeast strains, but the inverse was observed when L. fermentum was the contaminant. The contamination effect was more harmful with the rough yeast strain than with the bacteria, and the double contamination (with both rough yeast strain and bacteria) did not have a higher effect over the fermentative efficiency than the single contamination, by one or another microorganism in isolation, especially in the batch fermentation with cell recycle, regardless the substrate. In cell-recycled fermentations the effect of the substrate was less evident. The growth control of the rough yeast strains may be done by modifying the acid cell treatment carried out in the industry, both by the addition of ethanol to the acid solution or by the pH lowering, depending on the rough yeast strain. , The combined treatment (pH 2.0 + 13% ethanol) affected PE-2 physiology, bringing about loss in the cell-recycled fermentation, with low growth control of the rough yeast strain but causing cell death of L. fermentum. The difference in the invertase activity between the rough yeast strains and the starter yeast PE-2 may be responsible for the low fermentation rate displayed by the rough yeast strains, but a non significant effect of the substrate on the enzyme activity was observed.
7

Propriedade antibacteriana da própolis verde sobre bactérias contaminantes da fermentação etanólica / Bacterial properties of green propolis bacteria contaminants on the ethanol fermentation

Viégas, Ellen Karine Diniz 25 July 2011 (has links)
Os processos industriais de produção de álcool existentes no Brasil reutilizam o fermento em ciclos fermentativos consecutivos. Paralelamente, o excedente produzido pela multiplicação das células de levedura durante esse processo é seco e comercializado, principalmente no mercado externo, como ingrediente para ração animal. As práticas usualmente utilizadas nas indústrias para reduzir a contaminação bacteriana são o tratamento ácido do creme de levedura e a aplicação de antibióticos. Porém, desde que foram detectados altos níveis de resíduos de antibióticos na levedura destinada à ração animal, seu uso tem sido condenado pela comunidade internacional. Desde então as indústrias brasileiras têm buscado alternativas aos antibióticos para o controle da contaminação bacteriana. O objetivo deste trabalho foi avaliar a atividade antimicrobiana do extrato da própolis sobre as bactérias do gênero Lactobacillus fermentum e Bacillus subtillis, que são alguns dos contaminantes da fermentação alcoólica. O maior pico de produção de compostos fenólicos totais foi com uso de etanol 76% como solvente, à 58°C por 50 minutos, apresentando 68,95 mg de CFT/g de própolis e um halo de inibição de 6 e 5mm para Bacillus e Lactobacillus, respectivamente. As faixas das variáveis que maximizaram o teor alcoólico foi o processo fermentativo conduzido a 32°C, com 41 g de células de leveduras/L, em um meio contento 18,5°Brix. Apesar do antimicrobiano comercial ter apresentado maior eficiência na redução da contaminação (94,46% e 97,40% para Lactobacillus e Bacillus, respectivamente), o extrato de própolis tem potencial para ser utilizado no controle dos contaminantes bacterianos presentes nas fermentações etanólicas, sendo responsável por redução de 54,24% e 67,02% para Lactobacillus e Bacillus, respectivamente. / The industrial processes of ethanol production in Brazil reuse yeast fermentation in consecutive cycles. In parallel, the surplus produced by the multiplication of yeast cells during this process is dried and sold, mainly in foreign markets as an ingredient for animal feed. The practices commonly used in industry to reduce bacterial contamination are the acid treatment of the yeast cream and the application of antibiotics. However, since they were detected high levels of antibiotic residues in yeast destined for animal feed, its use has been condemned by the international community. Since then Brazilian industries have sought alternatives to antibiotics to control bacterial contamination. The aim of this study was to evaluate the antimicrobial activity of the extract of propolis on bacteria of the genus Lactobacillus and Bacillus, which are some of the contaminants of fermentation. The highest peak production of phenolic compounds was using 76% ethanol as solvent at 58°C for 50 minutes, with 68,95 mg of CFT/g of propolis and a halo of inhibition of 6 and 5mm for Bacillus and Lactobacillus, respectively. The ranges of variables that maximized the alcoholic fermentation was conducted at 32°C with 41g of yeast cells/L in media containing a 18,5°Brix. Despite having larger commercial antimicrobial effectiveness in reducing contamination (94,46% and 97,40% for Lactobacillus and Bacillus, respectively), the extract of propolis has potential to be used in the control of bacterial contaminants present in the ethanolic fermentation, and responsible for reduction of 54,24% and 67,02% for Lactobacillus and Bacillus, respectively.
8

Efeito do substrato e das condições de tratamento do fermento sobre a fermentação etanólica contaminada com leveduras Saccharomyces cerevisiae selvagens e Lactobacillus fermentum / Effect of the substrate and the cell treatment conditions on the ethanolic fermentation contaminated with Saccharomyces cerevisiae wild yeasts and Lactobacillus fermentum

Vanda Renata Reis 07 April 2016 (has links)
Pouco se sabe sobre o efeito do substrato e a interação entre as leveduras selvagens e bactérias do gênero Lactobacillus na fermentação alcoólica, pois os estudos tem se concentrado na avaliação dos efeitos da contaminação por um ou outro contaminante separadamente. Diante disso, este trabalho teve como objetivos estudar o efeito do substrato e das condições de tratamento do fermento sobre as fermentações contaminadas com ambos os micro-organismos, leveduras S. cerevisiae selvagens (três linhagens apresentando colônias rugosas e células dispostas em pseudohifas) e Lactobacillus fermentum, tendo a linhagem industrial de S. cerevisiae PE-2 como levedura do processo. Foram realizadas fermentações em batelada em mosto de caldo e de melaço, sem reciclo e com reciclo celular, utilizando tanto a cultura pura da linhagem PE-2 quanto as culturas mistas com as linhagens rugosas e ou L. fermentum. Foram avaliadas modificações no tratamento ácido do fermento, visando o controle do crescimento dos contaminantes sem afetar a levedura do processo. Em seguida, foram conduzidas fermentações contaminadas e não contaminadas submetidas ao tratamento ácido combinado com adição de etanol, tanto em caldo quanto em melaço, utilizando-se PE-2, uma das linhagens rugosas e L. fermentum. A atividade da invertase extracelular foi também avaliada em ambos os substratos para os micro-organismos estudados, em condições de crescimento. Concluiu-se que o tipo de substrato de fermentação, caldo de cana ou melaço, influenciou o desempenho da linhagem industrial PE-2 assim como afetou o desenvolvimento das contaminações com as leveduras rugosas S. cerevisiae na presença ou ausência da bactéria L. fermentum, em fermentações sem reciclo celular. O efeito da contaminação foi mais evidente quando se utilizou caldo de cana do que melaço como substrato, no caso da contaminação com leveduras rugosas, e o inverso no caso da contaminação com L. fermentum. O efeito da contaminação sobre a eficiência fermentativa foi maior na presença da levedura rugosa do que com a bactéria, e a contaminação dupla (tanto com a levedura rugosa quanto com a bactéria) não teve efeito maior sobre a eficiência fermentativa do que a contaminação simples, por um ou por outro micro-organismo isoladamente, especialmente na fermentação em batelada com reciclo celular, independentemente do substrato. Nas fermentações com reciclo de células, o efeito do substrato foi menos evidente. O controle do crescimento das linhagens rugosas pode ser realizado modificando o tratamento ácido normalmente realizado na indústria, seja pela adição de etanol à solução ácida ou pelo abaixamento do pH, dependendo da linhagem rugosa. O tratamento combinado baixo pH (2,0) + 13% etanol afetou a fisiologia da linhagem industrial, trazendo prejuízos à fermentação com reciclo celular, com pequeno controle sobre o crescimento da levedura rugosa e causando morte celular à L. fermentum. A diferença na atividade invertásica entre as linhagens rugosas e industrial de S. cerevisiae pode ser a responsável pela fermentação lenta apresentada pelas linhagens rugosas quando presentes na fermentação, sendo não significativa a influência do substrato sobre a atividade dessa enzima. / A little is known about the effect of the substrate and the interaction among wild yeast strains and bacteria Lactobacillus in the alcoholic fermentation, because the studies have been concentrated in the evaluation of the contamination effects by one or another contaminant, separately. This work aimed to evaluate the effect of the substrate and the cell treatment conditions over the batch fermentations contaminated with both microorganisms, yeast wild strains of S. cerevisiae (three strains displaying rough colonies and pseudohyphal cell growth) and Lactobacillus fermentum, being the S. cerevisiae strain PE-2 as the starter yeast. Fermentations using sugarcane juice and molasses, without and with cell recycle, utilizing both the pure culture of PE-2 as the mixed cultures with rough yeast strains and or L. fermentum were carried out. Modifications in the acid cell treatment by the addition of ethanol to the acid solution and the lowering of pH of the acid solution or a treatment with potassium metabisulphite were evaluated, aiming the growth control of the contaminants without affecting the starter yeast. An acid treatment with the addition of 13% ethanol was applied in fermentation with cell recycle, both in sugarcane juice and molasses, utilizing PE-2, one of the rough yeast strains and L. fermentum. The extracellular invertase activity was also evaluated in both substrates for the microorganisms studied, in growing conditions. The type of substrate, sugarcane juice or molasses, influenced the performance of the PE-2 strain as well as affected the development of the contaminations with rough S. cerevisiae yeast strains with or without L. fermentum, in fermentations without cell recycle. The effect of the contamination was more remarkable when sugarcane juice was utilized, in fermentations contaminated with rough yeast strains, but the inverse was observed when L. fermentum was the contaminant. The contamination effect was more harmful with the rough yeast strain than with the bacteria, and the double contamination (with both rough yeast strain and bacteria) did not have a higher effect over the fermentative efficiency than the single contamination, by one or another microorganism in isolation, especially in the batch fermentation with cell recycle, regardless the substrate. In cell-recycled fermentations the effect of the substrate was less evident. The growth control of the rough yeast strains may be done by modifying the acid cell treatment carried out in the industry, both by the addition of ethanol to the acid solution or by the pH lowering, depending on the rough yeast strain. , The combined treatment (pH 2.0 + 13% ethanol) affected PE-2 physiology, bringing about loss in the cell-recycled fermentation, with low growth control of the rough yeast strain but causing cell death of L. fermentum. The difference in the invertase activity between the rough yeast strains and the starter yeast PE-2 may be responsible for the low fermentation rate displayed by the rough yeast strains, but a non significant effect of the substrate on the enzyme activity was observed.
9

Process Oscillations in Continuous Ethanol Fermentation with Saccharomyces cerevisiae

Bai, Fengwu January 2007 (has links)
Based on ethanol fermentation kinetics and bioreactor engineering theory, a system composed of a continuously stirred tank reactor (CSTR) and three tubular bioreactors in series was established for continuous very high gravity (VHG) ethanol fermentation with Saccharomyces cerevisiae. Sustainable oscillations of residual glucose, ethanol, and biomass characterized by long oscillation periods and large oscillation amplitudes were observed when a VHG medium containing 280 g/L glucose was fed into the CSTR at a dilution rate of 0.027 h1. Mechanistic analysis indicated that the oscillations are due to ethanol inhibition and the lag response of yeast cells to ethanol inhibition. A high gravity (HG) medium containing 200 g/L glucose and a low gravity (LG) medium containing 120 g/L glucose were fed into the CSTR at the same dilution rate as that for the VHG medium, so that the impact of residual glucose and ethanol concentrations on the oscillations could be studied. The oscillations were not significantly affected when the HG medium was used, and residual glucose decreased significantly, but ethanol maintained at the same level, indicating that residual glucose was not the main factor triggering the oscillations. However, the oscillations disappeared after the LG medium was fed and ethanol concentration decreased to 58.2 g/L. Furthermore, when the LG medium was supplemented with 30 g/L ethanol to achieve the same level of ethanol in the fermentation system as that achieved under the HG condition, the steady state observed for the original LG medium was interrupted, and the oscillations observed under the HG condition occurred. The steady state was gradually restored after the original LG medium replaced the modified one. These experimental results confirmed that ethanol, whether produced by yeast cells during fermentation or externally added into a fermentation system, can trigger oscillations once its concentration approaches to a criterion. The impact of dilution rate on oscillations was also studied. It was found that oscillations occurred at certain dilution rate ranges for the two yeast strains. Since ethanol production is tightly coupled with yeast cell growth, it was speculated that the impact of the dilution rate on the oscillations is due to the synchronization of the mother and daughter cell growth rhythms. The difference in the oscillation profiles exhibited by the two yeast strains is due to their difference in ethanol tolerance. For more practical conditions, the behavior of continuous ethanol fermentation was studied using a self-flocculating industrial yeast strain and corn flour hydrolysate medium in a simulated tanks-in-series fermentation system. Amplified oscillations observed at the dilution rate of 0.12 h1 were postulated to be due to the synchronization of the two yeast cell populations generated by the continuous inoculation from the seed tank upstream of the fermentation system, which was partly validated by oscillation attenuation after the seed tank was removed from the fermentation system. The two populations consisted of the newly inoculated yeast cells and the yeast cells already adapted to the fermentation environment. Oscillations increased residual sugar at the end of the fermentation, and correspondingly, decreased the ethanol yield, indicating the need for attenuation strategies. When the tubular bioreactors were packed with ½” Intalox ceramic saddles, not only was their ethanol fermentation performance improved, but effective oscillation attenuation was also achieved. The oscillation attenuation was postulated to be due to the alleviation of backmixing in the packed tubular bioreactors as well as the yeast cell immobilization role of the packing. The residence time distribution analysis indicated that the mixing performance of the packed tubular bioreactors was close to a CSTR model for both residual glucose and ethanol, and the assumed backmixing alleviation could not be achieved. The impact of yeast cell immobilization was further studied using several different packing materials. Improvement in ethanol fermentation performance as well as oscillation attenuation was achieved for the wood chips, as well as the Intalox ceramic saddles, but not for the porous polyurethane particles, nor the steel Raschig rings. Analysis for the immobilized yeast cells indicated that high viability was the mechanistic reason for the improvement of the ethanol fermentation performance as well as the attenuation of the oscillations. A dynamic model was developed by incorporating the lag response of yeast cells to ethanol inhibition into the pseudo-steady state kinetic model, and dynamic simulation was performed, with good results. This not only provides a basis for developing process intervention strategies to minimize oscillations, but also theoretically support the mechanistic hypothesis for the oscillations.
10

Propriedade antibacteriana da própolis verde sobre bactérias contaminantes da fermentação etanólica / Bacterial properties of green propolis bacteria contaminants on the ethanol fermentation

Ellen Karine Diniz Viégas 25 July 2011 (has links)
Os processos industriais de produção de álcool existentes no Brasil reutilizam o fermento em ciclos fermentativos consecutivos. Paralelamente, o excedente produzido pela multiplicação das células de levedura durante esse processo é seco e comercializado, principalmente no mercado externo, como ingrediente para ração animal. As práticas usualmente utilizadas nas indústrias para reduzir a contaminação bacteriana são o tratamento ácido do creme de levedura e a aplicação de antibióticos. Porém, desde que foram detectados altos níveis de resíduos de antibióticos na levedura destinada à ração animal, seu uso tem sido condenado pela comunidade internacional. Desde então as indústrias brasileiras têm buscado alternativas aos antibióticos para o controle da contaminação bacteriana. O objetivo deste trabalho foi avaliar a atividade antimicrobiana do extrato da própolis sobre as bactérias do gênero Lactobacillus fermentum e Bacillus subtillis, que são alguns dos contaminantes da fermentação alcoólica. O maior pico de produção de compostos fenólicos totais foi com uso de etanol 76% como solvente, à 58°C por 50 minutos, apresentando 68,95 mg de CFT/g de própolis e um halo de inibição de 6 e 5mm para Bacillus e Lactobacillus, respectivamente. As faixas das variáveis que maximizaram o teor alcoólico foi o processo fermentativo conduzido a 32°C, com 41 g de células de leveduras/L, em um meio contento 18,5°Brix. Apesar do antimicrobiano comercial ter apresentado maior eficiência na redução da contaminação (94,46% e 97,40% para Lactobacillus e Bacillus, respectivamente), o extrato de própolis tem potencial para ser utilizado no controle dos contaminantes bacterianos presentes nas fermentações etanólicas, sendo responsável por redução de 54,24% e 67,02% para Lactobacillus e Bacillus, respectivamente. / The industrial processes of ethanol production in Brazil reuse yeast fermentation in consecutive cycles. In parallel, the surplus produced by the multiplication of yeast cells during this process is dried and sold, mainly in foreign markets as an ingredient for animal feed. The practices commonly used in industry to reduce bacterial contamination are the acid treatment of the yeast cream and the application of antibiotics. However, since they were detected high levels of antibiotic residues in yeast destined for animal feed, its use has been condemned by the international community. Since then Brazilian industries have sought alternatives to antibiotics to control bacterial contamination. The aim of this study was to evaluate the antimicrobial activity of the extract of propolis on bacteria of the genus Lactobacillus and Bacillus, which are some of the contaminants of fermentation. The highest peak production of phenolic compounds was using 76% ethanol as solvent at 58°C for 50 minutes, with 68,95 mg of CFT/g of propolis and a halo of inhibition of 6 and 5mm for Bacillus and Lactobacillus, respectively. The ranges of variables that maximized the alcoholic fermentation was conducted at 32°C with 41g of yeast cells/L in media containing a 18,5°Brix. Despite having larger commercial antimicrobial effectiveness in reducing contamination (94,46% and 97,40% for Lactobacillus and Bacillus, respectively), the extract of propolis has potential to be used in the control of bacterial contaminants present in the ethanolic fermentation, and responsible for reduction of 54,24% and 67,02% for Lactobacillus and Bacillus, respectively.

Page generated in 0.5547 seconds